1.Comparison of the antagonistic effects of 6 beta-naltrexol and naltrexone against morphine analgesia.
Ling-di YAN ; Ze-hui GONG ; Xia-jun YAO ; Bo-yi QIN
Acta Pharmaceutica Sinica 2003;38(8):578-581
AIMTo compare the antagonistic effects of 6 beta-naltrexol and naltrexone against morphine analgesia.
METHODSThe effects of 6 beta-naltrexol and naltrexone against morphine analgesia were observed in mouse heat radiant tail-flick assay and in mouse (55 +/- 1) degrees C hot plate test. The displacement of 6 beta-naltrexol and naltrexone on binding to CHO-mu receptor was observed by radioligand binding study.
RESULTS6 beta-naltrexol antagonized morphine analgesia but the potency was (6.1 +/- 1.7)% that of naltrexone. The effective duration of 6 beta-naltrexol was 3-4 times that of naltrexone and the peak time of the response was about 0.5-1 h after s.c. equivalent efficacy dose (ED95) in two models. Like naltrexone, 6 beta-naltrexol was effective by oral administration and the potency ratio of p.o./s.c. was 1/3. As an antagonist to opioid receptor, the displacement of 6 beta-naltrexol was about 12.5% that of naltrexone, which was almost in agreement with the efficacies against morphine analgesia in mouse.
CONCLUSIONCompared with naltrexone, 6 beta-naltrexol was less potent but duration was longer.
Analgesia ; Analgesics, Opioid ; antagonists & inhibitors ; Animals ; Female ; Male ; Mice ; Morphine ; antagonists & inhibitors ; Naltrexone ; analogs & derivatives ; pharmacology ; Narcotic Antagonists ; pharmacology ; Pain Threshold ; drug effects ; Receptors, Opioid, mu ; metabolism
2.TProtective effect of chlormethiazole, a sedative, against acetaminophen-induced liver injury in mice.
Han Chu LEE ; Sung Ae JUNG ; Hye Kyung JUNG ; Sun Young YI ; Doe Young KIM ; Il Hwan MOON ; Sung Su PARK
The Korean Journal of Internal Medicine 1999;14(2):27-33
OBJECTIVES: The hepatotoxicity of acetaminophen is not a result of the parent compound but is mediated by its reactive metabolite N-acetyl-p-benzoquinone imine. Cytochrome P4502E1 (CYP2E1) is the principal enzyme of this biotransformation, which accounts for approximately 52% of the bioactivation in human microsomes. Recently, chlormethiazole a sedative drug, is reported to be an efficient inhibitor of CYP2E1 activity in human beings. In this study we wished to evaluate whether chlormethiazole, an inhibitor of CYP2E1, could prevent acetaminophen-induced liver injury in mice. METHODS: Acetaminophen, at doses ranging from 200 to 600 mg/kg, was injected into the peritoneum of female C57BL/6 inbred mice fasted for four hours. Chlormethiazole (60 mg/kg) or 5% dextrose water was given 30 min before or 2 h after acetaminophen. Serum aminotransferase activities, histologic index score, survival rate and hepatic malondialdehyde levels were compared. RESULTS: Pretreatment with chlormethiazole 30 min before 400 mg/kg of acetaminophen completely inhibited acetaminophen-induced liver injury (median 118.5 U/L, range 75 to 142 vs. 14,070 U/L, range 5980 to 27,680 for AST; 49 U/L, range 41 to 64 vs. 15,330 U/L, range 13,920 to 15,940 for ALT). In mice receiving chlormethiazole 2 h after acetaminophen, the mean AST and ALT levels were also less elevated, reaching only 20% of the value of acetaminophen-only group. These protective effects were confirmed histologically. Whereas more than 50% of mice died at 500 mg/kg of acetaminophen, all the mice pretreated with chlormethiazole survived at the same dose. CONCLUSION: Chlormethiazole effectively reduces acetaminophen-induced liver injury in mice. Further studies are needed to assess its role in humans.
Acetaminophen/toxicity*
;
Acetaminophen/metabolism
;
Acetaminophen/antagonists & inhibitors
;
Analgesics, Non-Narcotic/toxicity*
;
Analgesics, Non-Narcotic/metabolism
;
Analgesics, Non-Narcotic/antagonists & inhibitors
;
Animal
;
Chlormethiazole/pharmacology*
;
Cytochrome P-450 CYP2E1/antagonists & inhibitors
;
Enzyme Inhibitors/pharmacology
;
Female
;
Human
;
Liver/metabolism
;
Liver/injuries*
;
Liver/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Sedatives, Nonbarbiturate/pharmacology*
;
Support, Non-U.S. Gov't
3.Spinal Gabapentin and Antinociception: Mechanisms of Action.
Myung Ha YOON ; Jeong Il CHOI ; Seong Wook JEONG
Journal of Korean Medical Science 2003;18(2):255-261
Spinal gabapentin has been known to show the antinociceptive effect. Although several assumptions have been suggested, mechanisms of action of gabapentin have not been clearly established. The present study was undertaken to examine the action mechanisms of gabapentin at the spinal level. Male SD rats were prepared for intrathecal catheterization. The effect of gabapentin was assessed in the formalin test. After pretreatment with many classes of drugs, changes of effect of gabapentin were examined. General behaviors were also observed. Intrathecal gabapentin produced a suppression of the phase 2 flinching, but not phase 1 in the formalin test. The antinociceptive action of intrathecal gabapentin was reversed by intrathecal NMDA, AMPA, D-serine, CGS 15943, atropine, and naloxone. No antagonism was seen following administration of bicuculline, saclofen, prazosin, yohimbine, mecamylamine, L-leucine, dihydroergocristine, or thapsigargin. Taken together, intrathecal gabapentin attenuated only the facilitated state. At the spinal level, NMDA receptor, AMPA receptor, nonstrychnine site of NMDA receptor, adenosine receptor, muscarinic receptor, and opioid receptor may be involved in the antinociception of gabapentin, but GABA receptor, L-amino acid transporter, adrenergic receptor, nicotinic receptor, serotonin receptor, or calcium may not be involved.
Acetic Acids/administration & dosage
;
Acetic Acids/metabolism
;
Acetic Acids/pharmacology*
;
Adrenergic Antagonists/metabolism
;
Adrenergic alpha-Antagonists/metabolism
;
Analgesics/administration & dosage
;
Analgesics/metabolism
;
Analgesics/pharmacology*
;
Animals
;
Atropine/metabolism
;
Dihydroergocristine/metabolism
;
Enzyme Inhibitors/metabolism
;
Excitatory Amino Acid Agonists/metabolism
;
GABA Antagonists/metabolism
;
Injections, Spinal
;
Leucine/metabolism
;
Male
;
Mecamylamine/metabolism
;
Muscarinic Antagonists/metabolism
;
N-Methylaspartate/metabolism
;
Naloxone/metabolism
;
Narcotic Antagonists/metabolism
;
Nicotinic Antagonists/metabolism
;
Pain Measurement
;
Quinazolines/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Serine/metabolism
;
Spinal Cord/drug effects*
;
Thapsigargin/metabolism
;
Triazoles/metabolism
;
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
4.Morphine Postconditioning Attenuates ICAM-1 Expression on Endothelial Cells.
Too Jae MIN ; Joong il KIM ; Jae Hwan KIM ; Kyung Hee NOH ; Tae Woo KIM ; Woon Young KIM ; Yoon Sook LEE ; Young Cheol PARK
Journal of Korean Medical Science 2011;26(2):290-296
The purpose of this study is to determine 1) whether morphine postconditiong (MPostC) can attenuate the intercellular adhesion molecules-1 (ICAM-1) expression after reoxygenation injury and 2) the subtype(s) of the opioid receptors (ORs) that are involved with MPostC. Human umbilical vein endothelial cells (HUVECs) were subjected to 6 hr anoxia followed by 12 hr reoxygenation. Three morphine concentrations (0.3, 3, 30 microM) were used to evaluate the protective effect of MPostC. We also investigated blockading the OR subtypes' effects on MPostC by using three antagonists (a micro-OR antagonist naloxone, a kappa-OR antagonist nor-binaltorphimine, and a delta-OR antagonist naltrindole) and the inhibitor of protein kinase C (PKC) chelerythrine. As results, the ICAM-1 expression was significantly reduced in the MPostC (3, 30 microM) groups compared to the control group at 1, 6, 9, and 12 hours reoxygenation time. As a consequence, neutrophil adhesion was also decreased after MPostC. These effects were abolished by coadministering chelerythrine, nor-binaltorphimine or naltrindole, but not with naloxone. In conclusion, it is assumed that MPostC could attenuate the expression of ICAM-1 on endothelial cells during reoxygenation via the kappa and delta-OR (opioid receptor)-specific pathway, and this also involves a PKC-dependent pathway.
Animals
;
Benzophenanthridines/pharmacology
;
Endothelial Cells/cytology/*drug effects/*metabolism
;
Endothelium, Vascular/cytology
;
Humans
;
Intercellular Adhesion Molecule-1/genetics/*metabolism
;
Morphine/*pharmacology
;
Naloxone/pharmacology
;
Naltrexone/analogs & derivatives/pharmacology
;
Narcotic Antagonists/pharmacology
;
Narcotics/*pharmacology
;
Protein Isoforms/metabolism
;
Protein Kinase C/antagonists & inhibitors/metabolism
;
Receptors, Opioid/metabolism
;
Reperfusion Injury/*metabolism
;
Signal Transduction/physiology
;
Umbilical Veins/cytology
5.Biphasic modulation of behavioral nociceptive responses by morphine in adult mice after amputation.
Acta Physiologica Sinica 2004;56(4):436-443
Amputation of a segment of the tail produced long-lasting changes in nociception and morphine-induced antinociception. Plastic changes in nociceptive transmission may occur at the spinal cord as well as supraspinal structures after tail amputation. Acute hyperalgesia is detected at the remaining part of the tail as well as hindpaw. Morphine induced facilitation of the hot-plate (HP) response at a low dose and a greater dose of morphine is required to produce complete inhibition of the HP response. Since these effects happen at five weeks after the surgery, tail amputation may serve as a mouse model for studying long-term plastic changes in central nervous system after amputation.
Amputation
;
adverse effects
;
Animals
;
Hyperalgesia
;
drug therapy
;
etiology
;
physiopathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Morphine
;
pharmacology
;
Narcotic Antagonists
;
pharmacology
;
Neurons
;
drug effects
;
metabolism
;
physiology
;
Nociceptors
;
physiology
;
Pain Threshold
;
drug effects
;
physiology
;
Tail
6.In vitro O-demethylation of rotundine by recombinant human CYP isoenzymes.
Chun-zheng LI ; Qing-hui LIN ; Xiao-mei ZHUANG ; Jian-wei XIE ; Hua LI
Acta Pharmaceutica Sinica 2010;45(3):307-313
Rotundine (1 micromol L(-1)) was incubated with a panel of rCYP enzymes (1A2, 2C9, 2C19, 2D6 and 3A4) in vitro. The remained parent drug in incubates was quantitatively analyzed by an Agilent LC-MS. CYP2C19, 3A4 and 2D6 were identified to be the isoenzymes involved in the metabolism of rotundine. The individual contributions of CYP2C19, 3A4 and 2D6 to the rotundine metabolism were assessed using the method of total normalized rate to be 31.46%, 60.37% and 8.17%, respectively. The metabolites of rotundine in incubates were screened with ESI-MS at selected ion mode, and were further identified using MS2 spectra and precise molecular mass obtained from an Agilent LC/Q-TOF-MSMS, as well as MS(n) spectra of LC-iTrap-MS(n). The predominant metabolic pathway of rotundine in rCYP incubates was O-demethylation. A total 5 metabolites were identified including 4 isomerides of mono demethylated rotundine and one di-demethylated metabolite. The results also showed that CYP2C19, 2D6 and 3A4 mediated O-demethylation of methoxyl groups at different positions of rotundine. Furthermore, the ESI-MS cleavage patterns of rotundine and its metabolites were explored by using LC/Q-TOF-MSMS and LC/iTrap-MS(n) techniques.
Analgesics, Non-Narcotic
;
metabolism
;
Aryl Hydrocarbon Hydroxylases
;
metabolism
;
Berberine Alkaloids
;
metabolism
;
Chromatography, Liquid
;
Cytochrome P-450 CYP1A2
;
metabolism
;
Cytochrome P-450 CYP2C19
;
Cytochrome P-450 CYP2C9
;
Cytochrome P-450 CYP2D6
;
metabolism
;
Cytochrome P-450 CYP3A
;
metabolism
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Dopamine Antagonists
;
metabolism
;
Humans
;
Isoenzymes
;
metabolism
;
Methylation
;
Recombinant Proteins
;
metabolism
;
Spectrometry, Mass, Electrospray Ionization
7.Synthesis and pharmacology of 8-amino-3-(tetrahydro-2-furanyl)methyl benzomorphan.
Qun ZHOU ; Wen-hu DUAN ; Dana J COHEN ; Jean M BIDLACK ; Mark P WENTLAND
Acta Pharmaceutica Sinica 2003;38(10):748-753
AIMTo design and synthesize new chiral 8-(substituted) amino-analogues of 3-[(tetrahydro-2-furanyl)methyl] benzomorphans, to expand knowledge of the structure-activity relationship (SAR) for 8-aminobenzomorphan.
METHODSTarget compounds were synthesized from the 8-triflate of the optically active 3-[(tetrahydro-2-furanyl)methyl]-2,6-methano-benzomorphans using Pd-catalyzed aminations. Opioid receptor binding experiments were performed to evaluate their biological activities.
RESULTSBoth 8-amino and 8-phenylamino analogues showed lower binding affinity for mu, delta and kappa receptors than corresponding 8-hydroxy-3-[(tetrahydro-2-furanyl)methyl]-2,6-methano-benzomorphan in vitro.
CONCLUSIONThe relative poor binding affinity of the target compounds did not warrant conducting the in vivo studies to determine if they have the profile(kappa agonist/mu antagonist) that will be potentially useful in the treatment of drug addiction. Further study is in progress.
Animals ; Benzomorphans ; chemical synthesis ; chemistry ; pharmacology ; Brain ; metabolism ; Furans ; chemical synthesis ; chemistry ; pharmacology ; Guinea Pigs ; Molecular Structure ; Narcotic Antagonists ; chemical synthesis ; chemistry ; pharmacology ; Radioligand Assay ; Receptors, Opioid ; metabolism ; Receptors, Opioid, delta ; metabolism ; Receptors, Opioid, kappa ; metabolism ; Receptors, Opioid, mu ; metabolism ; Structure-Activity Relationship
8.Central administration of Orphanin FQ inhibits GnRH secretion by ORL1 receptor in the median eminence of freely moving ovariectomized rats.
Xiao-Fei AN ; Ming HE ; Yi FENG ; Hao FENG ; Jiang-Yi YU
Neuroscience Bulletin 2009;25(1):1-6
OBJECTIVEThis study aimed to investigate the possible role of Orphanin FQ (OFQ) in the regulation of hypo-thalamic gonadotropin-releasing hormone (GnRH) secretion.
METHODSThe method of push-pull perfusion and radioimmuno-assay (RIA) were adopted to examine the secretory profile of GnRH in the median eminence (ME) in freely moving ovari-ectomized (OVX) rats after intracerebroventricular (icv) injection of OFQ and/or [Nphe(1)]NC(1-13)NH(2) (NC13), a competitive antagonists of the opioid receptor-like 1 receptor (ORL1 receptor).
RESULTSGnRH release from ME significantly decreased from 40 min to 80 min after the administration of 20 and 200 nmol OFQ in OVX rats (P < 0.05). This inhibitory effect of 20 nmol OFQ could be abolished by pretreatment with equal dose of NC13. More interestingly, GnRH secretion from ME was increased markedly 60 min after icv injection of 100 and 200 nmol NC13 (P < 0.05).
CONCLUSIONOur results suggested central administration of OFQ could inhibit the release of GnRH in the ME of hypothalamus through ORL1 receptor, providing further in vivo evidence supporting the role of OFQ in the control of GnRH secretion.
Analysis of Variance ; Animals ; Dose-Response Relationship, Drug ; Female ; Gonadotropin-Releasing Hormone ; metabolism ; Median Eminence ; metabolism ; Narcotic Antagonists ; Opioid Peptides ; pharmacology ; Ovariectomy ; methods ; Peptide Fragments ; pharmacology ; Radioimmunoassay ; Rats ; Rats, Sprague-Dawley ; Receptors, Opioid ; metabolism ; Secretory Pathway ; drug effects ; Vasodilator Agents ; pharmacology ; Wakefulness ; physiology
9.Anti-apoptotic effect of morphine-induced delayed preconditioning on pulmonary artery endothelial cells with anoxia/reoxygenation injury.
Wen-gang DING ; Hua-cheng ZHOU ; Xiao-guang CUI ; Wen-zhi LI ; Yue-ping GUO ; Bing ZHANG ; Wei LIU
Chinese Medical Journal 2008;121(14):1313-1318
BACKGROUNDOpioid preconditioning (PC) reduces anoxia/reoxygenation (A/R) injury to various cells. However, it remains unclear whether opioid-induced delayed PC would show anti-apoptotic effects on pulmonary artery endothelial cells (PAECs) suffering from A/R injury. The present study was conducted to elucidate this issue and to investigate the potential mechanism of opioid-induced delayed PC.
METHODSCultured porcine PAECs underwent 16-hour anoxia followed by 1-hour reoxygenation 24 hours after pretreatment with saline (NaCl; 0.9%) or morphine (1 micromol/L). To determine the underlying mechanism, a non-selective K(ATP) channel inhibitor glibenclamide (Glib; 10 micromol/L), a nitric oxide (NO) synthase blocker NG-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L), and an opioid receptor antagonist naloxone (Nal; 10 micromol/L) were given 30 minutes before the A/R load. The percentage of apoptotic cells was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. eNOS mRNA level was measured by real-time polymerase chain reaction (PCR). NO content of PAECs supernatants was measured with the Griess reagent.
RESULTSCompared to the A/R PAECs, morphine-induced delayed PC significantly reduced PAECs apoptosis ((18.1 +/- 1.9)% vs (5.5 +/- 0.3)%; P < 0.05), increased NO release ((11.4 +/- 1.3) micromol/L vs (20.5 +/- 2.1) micromol/L, P < 0.05), and up-regulated eNOS gene expression nearly 9 times (P < 0.05). The anti-apoptosis effect of morphine was abolished by pretreatment with Glib, L-NAME and Nal, but the three agent-selves did not aggravate the A/R injury. Furthermore, L-NAME and Nal offset the enhanced release of NO caused by pretreatment with morphine.
CONCLUSIONSMorphine-induced delayed PC prevents A/R injury of PAECs. This effect may be mediated by activation of K(ATP) channel via opioid receptor and NO signaling pathways.
Analgesics, Opioid ; pharmacology ; Animals ; Apoptosis ; drug effects ; Cell Hypoxia ; Cells, Cultured ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Enzyme Inhibitors ; pharmacology ; Glyburide ; pharmacology ; In Situ Nick-End Labeling ; Morphine ; pharmacology ; NG-Nitroarginine Methyl Ester ; pharmacology ; Naloxone ; pharmacology ; Narcotic Antagonists ; pharmacology ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; antagonists & inhibitors ; genetics ; metabolism ; Oxygen ; pharmacology ; Pulmonary Artery ; cytology ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Swine
10.Protein kinase C is partly involved in c-fos protein expression of nocuously-activated neurons but may not in concomitant modulatory action through opioid receptors at the spinal level in rats.
Hong NIE ; Hang WANG ; Rui-Xin ZHANG ; Wang-Cai GAO ; Jian-Tian QIAO
Acta Physiologica Sinica 2004;56(4):455-460
The present study was aimed to examine if protein kinase C (PKC) activation is necessarily involved in both the c-fos protein expression in the nocuously-activated c-fos protein-like immunoreactive (Fos-LI) neurons and the concomitant opioid receptor-mediated modulation in the dorsal horn circuitry of the spinal cord. Formalin was injected into a hindpaw of rats 5 min after the rats were pretreated with intrathecal (i.t.) administration of chelerythrine (Chel), an inhibitor of PKC, naloxone (Nal), combined administration of these two (Chel + Nal), or vehicle (n=5 in each group),respectively. By using immunocytochemical techniques, the formalin-induced Fos-LI neurons in the lumbar dorsal horn were calculated 1 h after formalin injection. The results showed that: (1) i.t. Chel significantly reduced the number of Fos-LI neurons in the dorsal horn of the spinal cord on the side ipsilateral to the formalin injection, showing a decrease by 60.3% (P<0.001) as compared to that observed in the i.t.vehicle group; (2) i.t. Nal significantly increased the number of Fos-LI neurons in the ipsilateral dorsal horn, with an increase of 46.0% (P<0.01) as compared to that in the i.t.vehicle group, the highest percentage increase being found in the deeper laminae of the dorsal horn; and (3) i.t. Chel + Nal also exhibited a significant decrease in Fos-LI neurons in the ipsilateral dorsal horn as compared to i.t. Nal group, showing a reduction of 53.2%, a value similar to that in the i.t. Chel group. These results suggest that: (1) PKC plays a role in the c-fos protein expression only in nearly one half of the Fos-LI neurons in the dorsal horn; and (2) PKC is possibly not involved in the concomitant modulation on the nociception mediated by micro- (and also partly delta-) opioid receptors in the spinal cord.
Animals
;
Formaldehyde
;
pharmacology
;
Immunohistochemistry
;
Male
;
Naloxone
;
pharmacology
;
Narcotic Antagonists
;
pharmacology
;
Nociceptors
;
physiology
;
Pain
;
metabolism
;
physiopathology
;
Posterior Horn Cells
;
physiology
;
Protein Kinase C
;
metabolism
;
physiology
;
Proto-Oncogene Proteins c-fos
;
biosynthesis
;
physiology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Opioid, delta
;
agonists
;
Spinal Cord
;
physiology