1.Prevalence and Factors Influencing Behavioral Addictions among School Adolescents: A Study in the Gwangju-Jeonnam Region
Narae KIM ; Bo-Hyun YOON ; Hyunju YUN ; Hyoung-Yeon KIM ; Ha-Ran JUNG ; Yuran JEONG ; Suhee PARK ; Young-Hwa SEA
Mood and Emotion 2025;23(1):11-20
Background:
The aim of this study is to evaluate the prevalence and associated psychosocial factors of behavioral addictions among school adolescents living in the Gwangju and Jeonnam regions in Korea.
Methods:
A self-reported survey was conducted from December 4, 2023, to January 31, 2024, including 855 middle and high school students residing in the Gwangju-Jeonnam regions. Aside from the information on demographic characteristics, data on depression, anxiety, Internet gaming addiction, gambling problems, and resilience was obtained.
Results:
The prevalence of Internet gaming addiction among adolescents was 5.4%, while the prevalence of gambling problems was 3.3%. The male adolescents had a significantly higher risk of behavioral addiction compared with the female adolescents. The logistic regression analysis revealed that male and depression were significant risk factors for Internet gaming addiction. For gambling problems, male was identified as a significant risk factor.
Conclusion
The findings of this study suggested that the prevalence of behavioral addiction among school adolescents has been relatively higher than that of previous studies, emphasizing the need for community-based prevention and intervention strategies tailored to the sex difference and psychological factors associated with adolescent behavioral addictions.
2.Prevalence and Factors Influencing Behavioral Addictions among School Adolescents: A Study in the Gwangju-Jeonnam Region
Narae KIM ; Bo-Hyun YOON ; Hyunju YUN ; Hyoung-Yeon KIM ; Ha-Ran JUNG ; Yuran JEONG ; Suhee PARK ; Young-Hwa SEA
Mood and Emotion 2025;23(1):11-20
Background:
The aim of this study is to evaluate the prevalence and associated psychosocial factors of behavioral addictions among school adolescents living in the Gwangju and Jeonnam regions in Korea.
Methods:
A self-reported survey was conducted from December 4, 2023, to January 31, 2024, including 855 middle and high school students residing in the Gwangju-Jeonnam regions. Aside from the information on demographic characteristics, data on depression, anxiety, Internet gaming addiction, gambling problems, and resilience was obtained.
Results:
The prevalence of Internet gaming addiction among adolescents was 5.4%, while the prevalence of gambling problems was 3.3%. The male adolescents had a significantly higher risk of behavioral addiction compared with the female adolescents. The logistic regression analysis revealed that male and depression were significant risk factors for Internet gaming addiction. For gambling problems, male was identified as a significant risk factor.
Conclusion
The findings of this study suggested that the prevalence of behavioral addiction among school adolescents has been relatively higher than that of previous studies, emphasizing the need for community-based prevention and intervention strategies tailored to the sex difference and psychological factors associated with adolescent behavioral addictions.
3.Prevalence and Factors Influencing Behavioral Addictions among School Adolescents: A Study in the Gwangju-Jeonnam Region
Narae KIM ; Bo-Hyun YOON ; Hyunju YUN ; Hyoung-Yeon KIM ; Ha-Ran JUNG ; Yuran JEONG ; Suhee PARK ; Young-Hwa SEA
Mood and Emotion 2025;23(1):11-20
Background:
The aim of this study is to evaluate the prevalence and associated psychosocial factors of behavioral addictions among school adolescents living in the Gwangju and Jeonnam regions in Korea.
Methods:
A self-reported survey was conducted from December 4, 2023, to January 31, 2024, including 855 middle and high school students residing in the Gwangju-Jeonnam regions. Aside from the information on demographic characteristics, data on depression, anxiety, Internet gaming addiction, gambling problems, and resilience was obtained.
Results:
The prevalence of Internet gaming addiction among adolescents was 5.4%, while the prevalence of gambling problems was 3.3%. The male adolescents had a significantly higher risk of behavioral addiction compared with the female adolescents. The logistic regression analysis revealed that male and depression were significant risk factors for Internet gaming addiction. For gambling problems, male was identified as a significant risk factor.
Conclusion
The findings of this study suggested that the prevalence of behavioral addiction among school adolescents has been relatively higher than that of previous studies, emphasizing the need for community-based prevention and intervention strategies tailored to the sex difference and psychological factors associated with adolescent behavioral addictions.
4.Prevalence and Factors Influencing Behavioral Addictions among School Adolescents: A Study in the Gwangju-Jeonnam Region
Narae KIM ; Bo-Hyun YOON ; Hyunju YUN ; Hyoung-Yeon KIM ; Ha-Ran JUNG ; Yuran JEONG ; Suhee PARK ; Young-Hwa SEA
Mood and Emotion 2025;23(1):11-20
Background:
The aim of this study is to evaluate the prevalence and associated psychosocial factors of behavioral addictions among school adolescents living in the Gwangju and Jeonnam regions in Korea.
Methods:
A self-reported survey was conducted from December 4, 2023, to January 31, 2024, including 855 middle and high school students residing in the Gwangju-Jeonnam regions. Aside from the information on demographic characteristics, data on depression, anxiety, Internet gaming addiction, gambling problems, and resilience was obtained.
Results:
The prevalence of Internet gaming addiction among adolescents was 5.4%, while the prevalence of gambling problems was 3.3%. The male adolescents had a significantly higher risk of behavioral addiction compared with the female adolescents. The logistic regression analysis revealed that male and depression were significant risk factors for Internet gaming addiction. For gambling problems, male was identified as a significant risk factor.
Conclusion
The findings of this study suggested that the prevalence of behavioral addiction among school adolescents has been relatively higher than that of previous studies, emphasizing the need for community-based prevention and intervention strategies tailored to the sex difference and psychological factors associated with adolescent behavioral addictions.
5.Prevalence and Factors Influencing Behavioral Addictions among School Adolescents: A Study in the Gwangju-Jeonnam Region
Narae KIM ; Bo-Hyun YOON ; Hyunju YUN ; Hyoung-Yeon KIM ; Ha-Ran JUNG ; Yuran JEONG ; Suhee PARK ; Young-Hwa SEA
Mood and Emotion 2025;23(1):11-20
Background:
The aim of this study is to evaluate the prevalence and associated psychosocial factors of behavioral addictions among school adolescents living in the Gwangju and Jeonnam regions in Korea.
Methods:
A self-reported survey was conducted from December 4, 2023, to January 31, 2024, including 855 middle and high school students residing in the Gwangju-Jeonnam regions. Aside from the information on demographic characteristics, data on depression, anxiety, Internet gaming addiction, gambling problems, and resilience was obtained.
Results:
The prevalence of Internet gaming addiction among adolescents was 5.4%, while the prevalence of gambling problems was 3.3%. The male adolescents had a significantly higher risk of behavioral addiction compared with the female adolescents. The logistic regression analysis revealed that male and depression were significant risk factors for Internet gaming addiction. For gambling problems, male was identified as a significant risk factor.
Conclusion
The findings of this study suggested that the prevalence of behavioral addiction among school adolescents has been relatively higher than that of previous studies, emphasizing the need for community-based prevention and intervention strategies tailored to the sex difference and psychological factors associated with adolescent behavioral addictions.
6.Machine Learning-Based Multi-Modal Prediction of Cognitive Decline in Community-Dwelling Older Adults
Jinhak KIM ; Narae KIM ; Bumhee PARK ; Hyun Woong ROH ; Chang Hyung HONG ; Sang Joon SON ;
Journal of Korean Geriatric Psychiatry 2024;28(2):33-40
Objective:
This study aimed to develop a machine learning model to predict cognitive decline in community-dwelling older adults. By integrating multimodal data, including demographic, psychosocial, and neuroimaging information, we sought to en-hance early detection of cognitive decline.
Methods:
Data were obtained from 159 participants in the Biobank Innovations for Chronic Cerebrovascular Disease with Alzheimer’s Disease Study. Participants underwent clinical assessments, neuropsychological testing, and magnetic resonance im-aging scans. Cognitive decline was defined as an increase in the Clinical Dementia Rating-Sum of Boxes of greater than 2.05 points per year at follow-up. Models were developed using the logistic classification, combining demographic, psychosocial as-sessments, and neuroimaging data. Model performance was evaluated using area under the curve (AUC), accuracy, and F1 score, while Shapley additive explanation values were used to assess feature importance.
Results:
The model that incorporated all data types achieved the highest performance, with an AUC of 0.834. The top predictor of cognitive decline was years of education, underscoring the importance of non-invasive, easily accessible data for prediction.
Conclusion
This machine learning model demonstrates significant potential for early cognitive decline prediction, offering a scalable tool for improving dementia screening and timely intervention, especially in resource-limited settings.
7.Machine Learning-Based Multi-Modal Prediction of Cognitive Decline in Community-Dwelling Older Adults
Jinhak KIM ; Narae KIM ; Bumhee PARK ; Hyun Woong ROH ; Chang Hyung HONG ; Sang Joon SON ;
Journal of Korean Geriatric Psychiatry 2024;28(2):33-40
Objective:
This study aimed to develop a machine learning model to predict cognitive decline in community-dwelling older adults. By integrating multimodal data, including demographic, psychosocial, and neuroimaging information, we sought to en-hance early detection of cognitive decline.
Methods:
Data were obtained from 159 participants in the Biobank Innovations for Chronic Cerebrovascular Disease with Alzheimer’s Disease Study. Participants underwent clinical assessments, neuropsychological testing, and magnetic resonance im-aging scans. Cognitive decline was defined as an increase in the Clinical Dementia Rating-Sum of Boxes of greater than 2.05 points per year at follow-up. Models were developed using the logistic classification, combining demographic, psychosocial as-sessments, and neuroimaging data. Model performance was evaluated using area under the curve (AUC), accuracy, and F1 score, while Shapley additive explanation values were used to assess feature importance.
Results:
The model that incorporated all data types achieved the highest performance, with an AUC of 0.834. The top predictor of cognitive decline was years of education, underscoring the importance of non-invasive, easily accessible data for prediction.
Conclusion
This machine learning model demonstrates significant potential for early cognitive decline prediction, offering a scalable tool for improving dementia screening and timely intervention, especially in resource-limited settings.
8.Machine Learning-Based Multi-Modal Prediction of Cognitive Decline in Community-Dwelling Older Adults
Jinhak KIM ; Narae KIM ; Bumhee PARK ; Hyun Woong ROH ; Chang Hyung HONG ; Sang Joon SON ;
Journal of Korean Geriatric Psychiatry 2024;28(2):33-40
Objective:
This study aimed to develop a machine learning model to predict cognitive decline in community-dwelling older adults. By integrating multimodal data, including demographic, psychosocial, and neuroimaging information, we sought to en-hance early detection of cognitive decline.
Methods:
Data were obtained from 159 participants in the Biobank Innovations for Chronic Cerebrovascular Disease with Alzheimer’s Disease Study. Participants underwent clinical assessments, neuropsychological testing, and magnetic resonance im-aging scans. Cognitive decline was defined as an increase in the Clinical Dementia Rating-Sum of Boxes of greater than 2.05 points per year at follow-up. Models were developed using the logistic classification, combining demographic, psychosocial as-sessments, and neuroimaging data. Model performance was evaluated using area under the curve (AUC), accuracy, and F1 score, while Shapley additive explanation values were used to assess feature importance.
Results:
The model that incorporated all data types achieved the highest performance, with an AUC of 0.834. The top predictor of cognitive decline was years of education, underscoring the importance of non-invasive, easily accessible data for prediction.
Conclusion
This machine learning model demonstrates significant potential for early cognitive decline prediction, offering a scalable tool for improving dementia screening and timely intervention, especially in resource-limited settings.
9.Machine Learning-Based Multi-Modal Prediction of Cognitive Decline in Community-Dwelling Older Adults
Jinhak KIM ; Narae KIM ; Bumhee PARK ; Hyun Woong ROH ; Chang Hyung HONG ; Sang Joon SON ;
Journal of Korean Geriatric Psychiatry 2024;28(2):33-40
Objective:
This study aimed to develop a machine learning model to predict cognitive decline in community-dwelling older adults. By integrating multimodal data, including demographic, psychosocial, and neuroimaging information, we sought to en-hance early detection of cognitive decline.
Methods:
Data were obtained from 159 participants in the Biobank Innovations for Chronic Cerebrovascular Disease with Alzheimer’s Disease Study. Participants underwent clinical assessments, neuropsychological testing, and magnetic resonance im-aging scans. Cognitive decline was defined as an increase in the Clinical Dementia Rating-Sum of Boxes of greater than 2.05 points per year at follow-up. Models were developed using the logistic classification, combining demographic, psychosocial as-sessments, and neuroimaging data. Model performance was evaluated using area under the curve (AUC), accuracy, and F1 score, while Shapley additive explanation values were used to assess feature importance.
Results:
The model that incorporated all data types achieved the highest performance, with an AUC of 0.834. The top predictor of cognitive decline was years of education, underscoring the importance of non-invasive, easily accessible data for prediction.
Conclusion
This machine learning model demonstrates significant potential for early cognitive decline prediction, offering a scalable tool for improving dementia screening and timely intervention, especially in resource-limited settings.
10.Intranasal Immunization WithNanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant E
Cheol Gyun KIM ; Won Kyong KIM ; Narae KIM ; Young Jin PYUNG ; Da-Jeong PARK ; Jeong-Cheol LEE ; Chong-Su CHO ; Hyuk CHU ; Cheol-Heui YUN
Immune Network 2023;23(6):e47-
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy.Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8 + and CD4 +T cells. Furthermore, the vaccines containing PST improved the mouse survival against O.tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

Result Analysis
Print
Save
E-mail