1.Effects of smoking on the concentrations of urinary 10 metabolites of polycyclic aromatic hydrocarbons in coke oven workers.
Yun-feng HE ; Wang-zhen ZHANG ; Dan KUANG ; Hua-xin DENG ; Xiao-hai LI ; Da-feng LIN ; Qi-fei DENG ; Kun HUANG ; Tang-chun WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2012;30(12):888-892
OBJECTIVETo explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers.
METHODSOccupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively.
RESULTSThe levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas.
CONCLUSIONUrinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Air Pollutants, Occupational ; urine ; Biomarkers ; urine ; Coke ; Humans ; Male ; Naphthols ; urine ; Occupational Exposure ; analysis ; Polycyclic Aromatic Hydrocarbons ; urine ; Pyrenes ; urine ; Smoking ; urine
2.Stability and Intra-Individual Variation of Urinary Malondialdehyde and 2-Naphthol.
Journal of Preventive Medicine and Public Health 2008;41(3):195-199
OBJECTIVES: Malondialdehyde (MDA), a lipid peroxidation by-product, has been widely used as an indicator of oxidative stress. Urinary 2-naphthol, a urinary PAH metabolite, is used as a marker of ambient particulate exposure and is associated with lung cancer and chronic obstructive pulmonary disease. However, the stability and intra-individual variation associated with urinary MDA and 2-naphthol have not been thoroughly addressed. The objective of this study was to assess the stability and intraindividual variation associated with urinary MDA and 2-naphthol. METHODS: Urine samples were collected from 10 healthy volunteers (mean age 34, range 27~42 years old). Each sample was divided into three aliquots and stored under three different conditions. The levels of urinary MDA and 2-naphthol were analyzed 1) just after sampling, 2) after storage at room temperature (21degrees C) for 16 hours, and 3) after storage in a -20degrees C freezer for 16 hours. In addition, an epidemiological study was conducted in 44 Chinese subjects over a period of 3 weeks. The urinary MDA and 2-naphthol were measured by HPLC three times. RESULTS: There was no difference in the levels of urinary MDA and 2-naphthol between the triplicate measurements (n=10, p=0.84 and p=0.83, respectively). The intra-class correlation coefficients (ICC) for urinary MDA and 2-naphthol were 0.74 and 0.42, respectively. However, the levels of PM2.5 in the air were well correlated with the levels of both MDA and 2-naphthol in the epidemiological study. CONCLUSIONS: These results suggest that urinary MDA and 2-naphthol remain stable under variable storage conditions, even at room temperature for 16 hours, and indicate that these markers can be used in epidemiological studies involving various sample storage conditions. The intra-CC of urinary 2-naphthol and MDA were acceptable for application to epidemiological studies.
Adult
;
Biological Markers
;
Female
;
Humans
;
Male
;
Malondialdehyde/*metabolism/*urine
;
Middle Aged
;
Naphthols/*metabolism/*urine
;
Oxidative Stress/physiology
;
Reproducibility of Results
3.Polycyclic aromatic hydrocarbons monohydroxy metabolites level in urine of general population in eight provinces of China.
Chuanfeng HUANG ; Jing ZHANG ; Chunguang DING ; Cuilan LIU ; Gang WANG ; Xinkui SONG ; Hanlin HUANG ; Baoli ZHU ; Hua SHAO ; Chunxiang ZHAO ; Changcheng HAN ; Shanzhuo PENG ; Xianlong JIANG ; Shanfa YU ; Hongrong JI ; Xiaoxi ZHANG ; Ran SUN ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(2):102-108
OBJECTIVETo assess the levels of polycyclic aromatic hydrocarbons monohydroxy metabolites in urine of general population in China among 8 provinces, provide the baseline of the metabolites in the general population.
METHODSFrom 2009 to 2010, 18 120 subjects of general population aged 6-60 years old were recruited from 24 areas among 8 provinces in east, west and central areas of China mainland by cluster random sampling. The information of the living environment and health condition were collected by questionnaire and spot urine samples were collected, 4 680 urine samples were analysed by high performance liquid chromatography with tandem mass spectrometry, and monohydroxy metabolites distribution in urine among groups of gender and ages were analysed.
RESULTSGeometric means (GM) of 2-naphthol, 1-naphthol, 3-phenanthrol and 1-hydroxypyrene concentration in urine (95%CI) were 1.85 (1.75-1.95), 1.55 (1.50-1.61), 0.57 (0.54-0.59) and 0.82 (0.78-0.85) µg/L, respectively;and median are 2.44, <0.50, 0.72 and 0.90 µg/L, respectively. The concentration between male and female were significantly different (P < 0.01), and the concentration among the groups of population were significantly different (P < 0.01), the GM of 2-naphthol among the groups of population aged 6-12, 13-16, 17-20, 21-30, 31-45 and 46-60 years old were 1.60, 1.56, 1.69, 2.23, 1.91 and 1.86 µg/L (χ(2) = 17.90, P < 0.01), the GM of 1-naphthol in the groups were 1.30, 1.16, 1.53, 1.68, 1.80 and 1.52 µg/L (χ(2) = 76.22, P < 0.01), the GM of 3-phenanthrol in the groups were 0.78, 0.76, 0.55, 0.42, 0.50 and 0.99 µg/L (χ(2) = 66.48, P < 0.01), the GM of 1-hydroxypyrene in the groups were 0.77,0.64, 1.00, 0.84, 0.84 and 0.57 µg/L (χ(2) = 51.48, P < 0.01), respectively.
CONCLUSIONThe distribution of monohydroxy metabolites levels in urine of general population were different, it provided a basic data for the further study of polycyclic aromatic hydrocarbons biomonitoring in the population.
Adolescent ; Adult ; Child ; China ; epidemiology ; Cross-Sectional Studies ; Environmental Exposure ; Female ; Humans ; Male ; Middle Aged ; Naphthols ; urine ; Polycyclic Aromatic Hydrocarbons ; urine ; Pyrenes ; urine ; Sentinel Surveillance ; Young Adult
4.Effects of Air Pollutants on Childhood Asthma.
Jeong Hee KIM ; Ja Kyoung KIM ; Byong Kwan SON ; Ji Eun OH ; Dae Hyun LIM ; Kwan Hee LEE ; Youn Chol HONG ; Sung Il CHO
Yonsei Medical Journal 2005;46(2):239-244
Epidemiologic studies have suggested the association between environmental exposure to volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and the increased risk of incurring asthma. Yet there is little data regarding the relationship between personal exposure to air pollution and the incidence of asthma in children. This study was designed to evaluate the effect of exposure to air pollution on children with asthma by using exposure biomarkers. We assessed the exposure level to VOCs by measuring urinary concentrations of hippuric acid and muconic acid, and PAHs by 1-OH pyrene and 2-naphthol in 30 children with asthma and 30 children without asthma (control). The mean level of hippuric acid was 0.158+/-0.169micromol/mol creatinine in the asthma group and 0.148+/-0.249micromol/mol creatinine in the control group, with no statistical significance noted (p=0.30). The mean concentration of muconic acid was higher in the asthma group than in the control group (7.630+/-8.915micromol/mol creatinine vs. 3.390+/-4.526micromol/mol creatinine p=0.01). The mean level of urinary 1-OHP was higher in the asthma group (0.430+/-0.343micromol/mol creatinine) than the control group (0.239+/-0.175micromol/mol creatinine), which was statistically significant (p=0.03). There was no difference in the mean concentration of 2-NAP between the two groups (9.864+/-10.037micromol/mol in the asthma group vs. 9.157+/-9.640micromol/mol in the control group, p=0.96). In conclusion, this study suggests that VOCs and PAHs have some role in asthma.
Air Pollutants/*pharmacology
;
Asthma/*physiopathology/urine
;
Case-Control Studies
;
Child, Preschool
;
Creatinine/urine
;
Female
;
Hippurates/urine
;
Humans
;
Male
;
Naphthols/urine
;
Organic Chemicals/chemistry/*pharmacology
;
Polycyclic Hydrocarbons, Aromatic/*pharmacology
;
Pyrenes/metabolism
;
Sorbic Acid/*analogs & derivatives/metabolism
;
Volatilization
5.Evaluation of biological monitoring markers using genomic and proteomic analysis for automobile emission inspectors and waste incinerating workers exposed to polycyclic aromatic hydrocarbons or 2,3,7,8,-tetracholrodedibenzo-p-dioxins.
Meyoung Kon KIM ; Sangnam OH ; Ji Hye LEE ; Hosub IM ; Yeon Mi RYU ; Eunha OH ; Joohyun LEE ; Eunil LEE ; Donggeun SUL
Experimental & Molecular Medicine 2004;36(5):396-410
In this study, we investigated the effects of PAHs and dioxin on mRNA and plasma protein expression using genomic and proteomic analysis for automobile emission inspectors and waste incineration workers. About 54 workers from automobile emission inspection offices, 31 workers from waste incinerating company and 84 unexposed healthy subjects were enrolled in this study. Urine and air samples were collected and analyzed by HPLC and GC/MS. Comet assays were carried out to evaluate any DNA damage in mononuclear and polynuclear cells. A significant difference in Olive tail moments in mononuclear cells was observed between exposed and control subjects (P <0.0001). To examine the differences of the gene expression profile in automobile emission inspectors and waste incineration workers, radioactive complementary DNA microarrays were used to evaluate changes in the expression of 1,152 total genes. The gene expression profiles showed that 11 genes were up-regulated and 4 genes were down-regulated in waste incinerating workers as compared with controls. Plasma proteins were analyzed by 2-dimentional electrophoresis with pH 3-10 NL IPG Dry strip. The protein expression profiles showed that 8 proteins were up- regulated and 1 protein, haptoglobin, was down- regulated in automobile emission inspectors and waste incineration workers. Serum paraoxonase/ arylesterase was found only in the plasma of waste incineration workers. The expression of genes and proteins involved in oxidative stress were up-regulated in both automobile emission inspectors and waste incineration workers. Several proteins, such as transthyrethin, sarcolectin and haptoglobin, that were highly up- or down-regulated, could serve as biological monitoring markers for future study.
Adult
;
Aged
;
Biological Markers/analysis
;
DNA Fragmentation
;
Environmental Monitoring/*methods
;
Gene Expression Profiling
;
Genetic Markers
;
Genomics
;
Humans
;
*Incineration
;
Middle Aged
;
Naphthols/urine
;
Occupational Exposure/analysis
;
Oligonucleotide Array Sequence Analysis
;
Polycyclic Hydrocarbons, Aromatic/analysis/*toxicity
;
Proteomics
;
Pyrenes/analysis
;
Research Support, Non-U.S. Gov't
;
Tetrachlorodibenzodioxin/analysis/*toxicity
;
*Vehicle Emissions