1.Stability and Intra-Individual Variation of Urinary Malondialdehyde and 2-Naphthol.
Journal of Preventive Medicine and Public Health 2008;41(3):195-199
OBJECTIVES: Malondialdehyde (MDA), a lipid peroxidation by-product, has been widely used as an indicator of oxidative stress. Urinary 2-naphthol, a urinary PAH metabolite, is used as a marker of ambient particulate exposure and is associated with lung cancer and chronic obstructive pulmonary disease. However, the stability and intra-individual variation associated with urinary MDA and 2-naphthol have not been thoroughly addressed. The objective of this study was to assess the stability and intraindividual variation associated with urinary MDA and 2-naphthol. METHODS: Urine samples were collected from 10 healthy volunteers (mean age 34, range 27~42 years old). Each sample was divided into three aliquots and stored under three different conditions. The levels of urinary MDA and 2-naphthol were analyzed 1) just after sampling, 2) after storage at room temperature (21degrees C) for 16 hours, and 3) after storage in a -20degrees C freezer for 16 hours. In addition, an epidemiological study was conducted in 44 Chinese subjects over a period of 3 weeks. The urinary MDA and 2-naphthol were measured by HPLC three times. RESULTS: There was no difference in the levels of urinary MDA and 2-naphthol between the triplicate measurements (n=10, p=0.84 and p=0.83, respectively). The intra-class correlation coefficients (ICC) for urinary MDA and 2-naphthol were 0.74 and 0.42, respectively. However, the levels of PM2.5 in the air were well correlated with the levels of both MDA and 2-naphthol in the epidemiological study. CONCLUSIONS: These results suggest that urinary MDA and 2-naphthol remain stable under variable storage conditions, even at room temperature for 16 hours, and indicate that these markers can be used in epidemiological studies involving various sample storage conditions. The intra-CC of urinary 2-naphthol and MDA were acceptable for application to epidemiological studies.
Adult
;
Biological Markers
;
Female
;
Humans
;
Male
;
Malondialdehyde/*metabolism/*urine
;
Middle Aged
;
Naphthols/*metabolism/*urine
;
Oxidative Stress/physiology
;
Reproducibility of Results
2.Effects of Air Pollutants on Childhood Asthma.
Jeong Hee KIM ; Ja Kyoung KIM ; Byong Kwan SON ; Ji Eun OH ; Dae Hyun LIM ; Kwan Hee LEE ; Youn Chol HONG ; Sung Il CHO
Yonsei Medical Journal 2005;46(2):239-244
Epidemiologic studies have suggested the association between environmental exposure to volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and the increased risk of incurring asthma. Yet there is little data regarding the relationship between personal exposure to air pollution and the incidence of asthma in children. This study was designed to evaluate the effect of exposure to air pollution on children with asthma by using exposure biomarkers. We assessed the exposure level to VOCs by measuring urinary concentrations of hippuric acid and muconic acid, and PAHs by 1-OH pyrene and 2-naphthol in 30 children with asthma and 30 children without asthma (control). The mean level of hippuric acid was 0.158+/-0.169micromol/mol creatinine in the asthma group and 0.148+/-0.249micromol/mol creatinine in the control group, with no statistical significance noted (p=0.30). The mean concentration of muconic acid was higher in the asthma group than in the control group (7.630+/-8.915micromol/mol creatinine vs. 3.390+/-4.526micromol/mol creatinine p=0.01). The mean level of urinary 1-OHP was higher in the asthma group (0.430+/-0.343micromol/mol creatinine) than the control group (0.239+/-0.175micromol/mol creatinine), which was statistically significant (p=0.03). There was no difference in the mean concentration of 2-NAP between the two groups (9.864+/-10.037micromol/mol in the asthma group vs. 9.157+/-9.640micromol/mol in the control group, p=0.96). In conclusion, this study suggests that VOCs and PAHs have some role in asthma.
Air Pollutants/*pharmacology
;
Asthma/*physiopathology/urine
;
Case-Control Studies
;
Child, Preschool
;
Creatinine/urine
;
Female
;
Hippurates/urine
;
Humans
;
Male
;
Naphthols/urine
;
Organic Chemicals/chemistry/*pharmacology
;
Polycyclic Hydrocarbons, Aromatic/*pharmacology
;
Pyrenes/metabolism
;
Sorbic Acid/*analogs & derivatives/metabolism
;
Volatilization