1.Naphthalene allyl trifluoromethyl benzocyclopentanone inhibits proliferation and induces apoptosis of lung cancer A549 cells in vitro.
Xu WU ; Jun Jie HE ; Ping LI ; Yi WANG ; Liang YAN ; Jin Zhu MA
Journal of Southern Medical University 2022;42(2):201-206
OBJECTIVE:
To investigate the molecular mechanism by which a novel naphthalene allyl trifluoromethyl benzocyclopentanone XX0335 inhibits the proliferation and induces apoptosis of lung cancer A549 cells.
METHODS:
Lung cancer A549 cells were treated with 0.1% DMSO (control) or different concentrations (6.25, 12.5, and 25 μg/mL) of XX0335, and the changes in cell viability, cell cycle, proliferation and apoptosis were assessed with CCK-8 assay, EdU experiment, and flow cytometry. The effects of different concentrations of XX0335 on phosphorylation levels of proliferation-related proteins Akt, mTOR, Akt/mTOR and the expressions of cleaved PARP and cyclin D1 were determined using Western blotting. We also assessed the effect of XX0335 on tumor growth in a mouse model bearing A945 cell xenograft.
RESULTS:
Treatment with XX0335 reduced the viability of A549 cells in a dose-dependent manner (P < 0.01) and significantly inhibited cell proliferation (P < 0.001). Flow cytometry showed that XX0335 treatment promoted apoptosis of the cells (P < 0.01) and caused an obvious increase of the number of G1-phase cells. Compared with DMSO, XX0335 significantly inhibited the phosphorylation of Akt and mTOR, increased the expression of cleaved PARP, and lowered the protein expression of cyclin D1. In the tumor-bearing mouse models, injection of XX0335 significantly decreased the tumor volume (P < 0.01).
CONCLUSION
XX0335 inhibits the proliferation, cycle and induces apoptosis of lung cancer A549 cells possibly by inhibiting the Akt/mTOR signal pathway.
A549 Cells
;
Animals
;
Apoptosis
;
Cell Proliferation
;
Humans
;
Lung Neoplasms/metabolism*
;
Mice
;
Naphthalenes/pharmacology*
2.Comparison of a glucose consumption based method with the CLSI M38-A method for testing antifungal susceptibility of Trichophyton rubrum and Trichophyton mentagrophytes.
Jing ZHANG ; Jian CHEN ; Huai-Qiu HUANG ; Li-Yan XI ; Wei LAI ; Ru-Zeng XUE ; Xiao-Hui ZHANG ; Rong-Zhang CHEN
Chinese Medical Journal 2010;123(14):1909-1914
BACKGROUNDThe prevalence of dermatophytoses and the development of new antifungal agents has focused interest on susceptibility tests of dermatophytes. The method used universally for susceptibility tests of dermatophytes was published as document (M38-A) in 2002 by the Clinical and Laboratory Standards Institute (CLSI), dealing with the standardization of susceptibility tests in filamentous fungi, though not including dermatophytes especially. However, it is not a very practical method for the clinical laboratory in routine susceptibility testing. In this test, we developed a novel rapid susceptibility assay-glucose consumption method (GCM) for dermatophytes.
METHODSIn this study, we investigated the antifungal susceptibilities of dermatophytes to itraconazole (ITC), voriconazole (VOC), econazole nitrate (ECN) and terbinafine (TBF) by glucose consumption method (GCM), in comparison to the Clinical and Laboratory Standards Institute (CLSI) M38-A method. Twenty-eight dermatophyte isolates, including Trichophyton rubrum (T. rubrum) (n = 14) and Trichophyton mentagrophytes (T. mentagrophytes) (n = 14), were tested. In the GCM, the minimum inhibitory concentrations (MICs) were determined spectrophotometrically at 490 nm after addition of enzyme substrate color mix. For the CLSI method, the MICs were determined visually.
RESULTSComparison revealed best agreement for TBF against T. mentagrophytes and T. rubrum, since MIC range, MIC50, and MIC90 were identical from two methods. However, for ITC and VOC, GCM showed wider MIC ranges and higher MICs than CLSI methods in most isolates. For ECN against T. rubrum, high MICs were tested by GCM (0.125-16 microg/ml) but not M38-A method (0.5-1 microg/ml). The overall agreements for all isolates between the two methods within one dilution and two dilutions for ITC, VOC, ECN and TBF was 53.6% and 75.0%, 57.1% and 75.0%, 82.1% and 89.3%, and 85.7 and 85.7%, respectively.
CONCLUSIONMeasurement of glucose uptake can predict the susceptibility of T. rubrum and T. mentagrophytes to ECN and TBF.
Antifungal Agents ; pharmacology ; Econazole ; pharmacology ; Glucose ; metabolism ; Itraconazole ; pharmacology ; Microbial Sensitivity Tests ; Naphthalenes ; pharmacology ; Pyrimidines ; pharmacology ; Triazoles ; pharmacology ; Trichophyton ; drug effects ; metabolism ; Voriconazole
3.Target lethal effect of recombinant soluble Fas coupled with protein kinase C inhibitor on colorectal carcinoma cells.
Guang CHEN ; Shi-yong LI ; Bo YU ; Ping AN
Chinese Journal of Gastrointestinal Surgery 2006;9(4):331-334
OBJECTIVETo study the target killing effect of soluble Fas(sFas) coupled with protein kinase C(PKC) inhibitor on colorectal carcinoma cells.
METHODSThe extracellular region of Fas protein was cloned and amplified by RT-PCR, and the expressing vector pGEX-4T-1-sFas was constructed. The sFas protein was purified by GST fusion protein purification system and coupled with Calphostin C(one kind of PKC inhibitor). The killing effect of soluble Fas coupled with PKC inhibitor on FasL-positive colorectal carcinoma cells was detected.
RESULTSAfter amplifying and cloning, the extracellular region of Fas protein, a 571 bp fragment, was proved by limited enzyme cutting and DNA sequencing. The expressed and purified protein was identified by Western Blot after transformed into E. coli BL21. The coupled sFas-Calphostin C showed suppressant activity on PKC kinase by the PKC kinase activity assay kit. The growth suppression rate of FasL-positive colorectal carcinoma HR-8348 cells treated with sFas-Calphostin C was significantly higher than that of FasL-negative cells, but the killing effect of sFas-Calphostin C on normal human monocyte was not obvious. Compared with 5-Fu alone, the growth suppression rate of FasL-positive colorectal carcinoma HR-8348 cells was significantly raised by sFas-Calphostin C combined with 5-Fu.
CONCLUSIONThe recombinant of soluble Fas and PKC inhibitor shows target killing effect on colorectal carcinoma cells.
Colorectal Neoplasms ; therapy ; Fas Ligand Protein ; pharmacology ; Humans ; Naphthalenes ; pharmacology ; Protein Kinase C ; antagonists & inhibitors ; Recombinant Proteins ; pharmacology ; Reverse Transcriptase Polymerase Chain Reaction ; Tumor Cells, Cultured
4.Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis.
Yue-bin ZENG ; Yuan-shu QIAN ; Lian MA ; Hong-ni GU
Chinese Medical Journal 2007;120(9):807-813
BACKGROUNDCandida albicans is the most frequently seen opportunistic human fungal pathogen. Terbinafine is an allylamine antifungal agent that has been proven to have high clinical efficacy in the therapy of fungal infections, the mechanism of action of terbinafine involves the specific inhibition of fungal squalene epoxidase, resulting in ergosterol deficiency and accumulation of intracellular squalene. We used cDNA microarray analysis technology to monitor global expression profile changes of Candida albicans genes in response to terbinafine treatment, and we anticipated a panoramic view of the responses of Candida albicans cells to the representatives of allylamine antifungal agents at the molecular level in an effort to identify drug class-specific and mechanism-independent changes in gene expression.
METHODSCandida albicans strain ATCC 90028 was exposed to either medium alone or terbinafine at a concentration equivalent to the 1/2 minimal inhibitory concentrations (MICs, 4 mg/L) for 90 minutes. RNA was isolated and gene expression profiles were compared to identify the changes in the gene expression profile using a cDNA microarray analysis. Differential expression of 10 select genes detected by cDNA microarray analysis was confirmed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).
RESULTSA total of 222 genes were found to be responsive to terbinafine, including 121 up-regulated genes and 101 down-regulated genes. These included genes encoding membrane transport proteins belonging to the members of the ATP-binding cassette (ABC) or major facilitator superfamily (MFS; CDR1, AGP2, GAP6, PHO84, HOL3, FCY23, VCX1), genes involved in stress response and detoxification (CDR1, AGP2, HOL3), and gene involved in the ergosterol biosynthesis pathway (ERG12). The results of semi-quantitative RT-PCR were consistent with that of the cDNA microarray analysis.
CONCLUSIONSThe up-regulation of the gene encoding the multidrug resistance efflux pump CDR1 may contribute to the terbinafine resistance in Candida albicans. However, the precise roles of other affected genes remain unclear, further studies of these genes and their respective products that play roles in the context of antifungal resistance are warranted.
Antifungal Agents ; pharmacology ; Candida albicans ; drug effects ; genetics ; Ergosterol ; biosynthesis ; Fungal Proteins ; genetics ; Gene Expression Profiling ; Genome, Fungal ; Membrane Transport Proteins ; genetics ; Naphthalenes ; pharmacology ; Oligonucleotide Array Sequence Analysis
5.Inhibitory effect of ONO-AE3-208 on the formation of bone metastasis of prostate cancer in mice.
Song XU ; Jing-Ping GE ; Wen-Quan ZHOU ; Zheng-Yu ZHANG
National Journal of Andrology 2014;20(8):684-689
OBJECTIVETo examine the effect of ONO-AE3-208, an EP4 antagonist, on the formation of bone metastasis from prostate cancer in mice.
METHODSThirty-four 6-week old nude mice were divided into an experimental and a control group of equal number to be treated by intraperitoneal injection of ONO-AE3-208 and double distilled water, respectively. Then PC3/LUC cells were constructed by stably transfecting luciferin to prostate cancer PC3 cells and inoculated into the left ventricle of the mice to establish an animal model of systemic bone metastasis. The time of metastasis formation, photon tumor burdens, and changes of the survival curves after modeling were compared between the two groups of mice.
RESULTSAt 30 days after modeling, bioluminescence imaging analysis showed that the photon tumor burdens were significantly increased in a time-dependent manner in the control group in comparison with those in the experimental group (P < 0.01). The rate of metastasis formation was significantly higher in the former than in the latter (93.3% vs 33.3%, P < 0.001). The median time of metastasis formation was 29 d (95% CI 26.547 - 35.262) in the experimental animals as compared with 21 d (95% CI 17.213 -24.787) in the controls (P < 0.001).
CONCLUSIONEP4 antagonist ONO-AE3-208 can inhibit the formation of bone metastasis from prostate cancer in mice.
Animals ; Bone Neoplasms ; prevention & control ; secondary ; Cell Line, Tumor ; Disease Models, Animal ; Humans ; Male ; Mice ; Mice, Nude ; Naphthalenes ; pharmacology ; Neoplasms, Experimental ; prevention & control ; Phenylbutyrates ; pharmacology ; Prostatic Neoplasms ; pathology
6.Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells.
Shu-Xia JIANG ; Qian LI ; Xiao-Han WANG ; Fang LI ; Zhong-Feng WANG
Acta Physiologica Sinica 2013;65(4):355-362
Activation of cannabinoid CB1 receptors (CB1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels. The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques. The results showed that under current-clamped condition perfusing WIN55212-2 (WIN, 5 μmol/L), a CB1R agonist, did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs. In the presence of cocktail synaptic blockers, including excitatory postsynaptic receptor blockers CNQX and D-APV, and inhibitory receptor blockers bicuculline and strychnine, perfusion of WIN (5 μmol/L) hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA). Phase-plane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN. However, WIN significantly decreased +dV/dtmax and -dV/dtmax of action potentials, suggestive of reduced rising and descending velocities of action potentials. The effects of WIN were reversed by co-application of SR141716, a CB1R selective antagonist. Moreover, WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked. These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.
Action Potentials
;
Animals
;
Benzoxazines
;
pharmacology
;
Evoked Potentials
;
In Vitro Techniques
;
Membrane Potentials
;
Morpholines
;
pharmacology
;
Naphthalenes
;
pharmacology
;
Patch-Clamp Techniques
;
Piperidines
;
pharmacology
;
Pyrazoles
;
pharmacology
;
Rats
;
Receptor, Cannabinoid, CB1
;
physiology
;
Retinal Ganglion Cells
;
physiology
7.Cannabinoids inhibit ATP-activated currents in rat trigeminal ganglionic neurons.
Jing-Jing SHEN ; Chang-Jin LIU ; Ai LI ; Xin-Wu HU ; Yong-Li LU ; Lei CHEN ; Ying ZHOU ; Lie-Ju LIU
Acta Physiologica Sinica 2007;59(6):745-752
The present study aimed to investigate whether cannabinoids could modulate the response mediated by ATP receptor (P2X purinoceptor). Whole-cell patch-clamp recording was performed on cultured rat trigeminal ganglionic (TG) neurons. The majority of TG neurons were sensitive to ATP (67/75, 89.33%). Extracellular pretreatment with WIN55212-2, a cannabinoid receptor 1 (CB1 receptor) agonist, reduced ATP-activated current (I(ATP)) significantly. This inhibitory effect was concentration-dependent and was blocked by AM281, a specific CB1 receptor antagonist. Pretreatment with WIN55212-2 at 1×10(-13), 1×10(-12), 1×10(-11), 1×10(-10), 1×10(-9) and 1×10(-8) mol/L reduced I(ATP) (induced by 1×10(-4) mol/L ATP) by (8.14±3.14)%, (20.11±2.72)%, (46.62±3.51)%, (72.16±5.64)%, (80.21±2.80)% and (80.59±3.55)%, respectively. The concentration-response curves for I(ATP) pretreated with and without WIN55212-2 showed that WIN55212-2 shifted the curve downward, and decreased the maximal amplitude of I(ATP) by (58.02±4.21)%. But the threshold value and EC(50) (1.15×10(-4) mol/L vs 1.27×10(-4) mol/L) remained unchanged. The inhibition of I(ATP) by WIN55212-2 was reversed by AM281, suggesting that the inhibition was mediated via the CB1 receptor. Pretreatment with forskolin [an agonist of adenylyl cyclase (AC)] or 8-Br-cAMP reversed the inhibition of I(ATP) by WIN55212-2. These results suggest that the inhibitory effect of cannabinoids on I(ATP) is mediated via the CB1 receptors, that lead to inhibition of the AC-cAMP-PKA signaling pathway.
Adenosine Triphosphate
;
physiology
;
Animals
;
Benzoxazines
;
pharmacology
;
Cannabinoids
;
pharmacology
;
Morpholines
;
pharmacology
;
Naphthalenes
;
pharmacology
;
Neurons
;
drug effects
;
physiology
;
Patch-Clamp Techniques
;
Pyrazoles
;
pharmacology
;
Rats
;
Receptor, Cannabinoid, CB1
;
agonists
;
antagonists & inhibitors
;
Signal Transduction
;
Trigeminal Ganglion
;
drug effects
;
physiology
8.Synthesis of precursor of anti-inflammatory agents by using highly reactive zinc.
Aishah AJ ; Nobuhito K ; Tokuda M
The Medical Journal of Malaysia 2004;59 Suppl B():210-211
Highly reactive zinc metal was prepared by electrolysis of a N,N-dimethylformamide (DMF) solution containing naphthalene and a supporting electrolyte in a one-compartment cell fitted with a platinum cathode and a zinc anode. This highly reactive electrogenerated zinc (EGZn/Naph) was used for transformation of ethyl 2-bromoacrylate into the corresponding organozinc compound, which can not be achieved by the use of usual zinc metals. Reaction of the organozinc compounds thus prepared with various aryl halides in the presence of 5 mol% of palladium catalyst gave the corresponding cross-coupling products in high yields. These cross-coupling reactions were successfully applied to a synthesis of the precursor of anti-inflammatory agents such as ibuprofen, naproxen, cicloprofen and suprofen.
Anti-Inflammatory Agents, Non-Steroidal/*chemical synthesis
;
Catalysis
;
Electrolysis
;
Ibuprofen/chemical synthesis
;
Naphthalenes
;
Naproxen/chemical synthesis
;
Prodrugs/*chemical synthesis
;
Propionic Acids/chemical synthesis
;
Suprofen/chemical synthesis
;
Zinc/*pharmacology
9.Synthesis and antifungal activity of novel triazole antifungal agents.
Chun-quan SHENG ; Jie ZHU ; Wan-nian ZHANG ; Yun-long SONG ; Min ZHANG ; Hai-tao JI ; Jian-xin YU ; Jian-zhong YAO ; Song YANG ; Zhen-yuan MIAO
Acta Pharmaceutica Sinica 2004;39(12):984-989
AIMA series of triazole antifungal agents were synthesized to search for novel triazole antifungal agents with more potent activity, less toxicity and broader spectrum.
METHODSTwenty-one 1-(1H-1, 2, 4-triazolyl)-2-(2, 4-diflurophenyl)-3-(4-substituted-1-piperazinyl)-2-propanols were synthesized, on the basis of the three dimensional structure of P450 cytochrome 14alpha-sterol demethylase (CYP51) and their antifungal activities were also evaluated.
RESULTSResults of preliminary biological tests showed that most of title compounds exhibited activity against the eight common pathogenic fungi to some extent and the activities against deep fungi were higher than that against shallow fungi. In general, phenyl and pyridinyl analogues showed higher antifungal activity than that of the phenylacyl analogues.
CONCLUSIONSeveral title compounds showed higher antifungal activities than fluconazole and terbinafine. Compound VIII-1, 4, 5 and IX-3 showed the best antifungal activity with broad antifungal spectrum and were chosen for further study.
Antifungal Agents ; chemical synthesis ; chemistry ; pharmacology ; Aspergillus fumigatus ; drug effects ; Candida albicans ; drug effects ; Cryptococcus neoformans ; drug effects ; Fluconazole ; pharmacology ; Microbial Sensitivity Tests ; Molecular Structure ; Naphthalenes ; pharmacology ; Structure-Activity Relationship ; Triazoles ; chemical synthesis ; chemistry ; pharmacology
10.A new naphthaldehyde derivative from Comastoma pulmonarium and its anti-tobacco mosaic virus (anti-TMV) activity.
Xiao-Long WANG ; Ping LI ; Jing LI ; Jian-Hua CHEN ; Guang-Yu YANG ; Qiu-Fen HU ; Cheng-Ming ZHANG ; Gan-Peng LI
China Journal of Chinese Materia Medica 2018;43(19):3884-3886
A new naphthaldehyde derivative has been isolated from Comastoma pulmonarium by using various chromatographic techniques, including silica gel, Sephadex LH-20, MCI-gel resin and RP-HPLC. This compounds was determined as 5-methoxy-2-methyl-7-(2-oxopropyl)naphthalene-1-carbaldehyde(1) by NMR, MS, IR and UV spectra. This compound was also evaluated for its anti-tobacco mosaic virus (anti-TMV) activity. The result showed that it showed high anti-TMV activity with inhibition rate of 32.8%. The inhibition rate is close to that of positive control (ningnanmycin).
Aldehydes
;
isolation & purification
;
pharmacology
;
Antiviral Agents
;
isolation & purification
;
pharmacology
;
Chromatography, High Pressure Liquid
;
Gentianaceae
;
chemistry
;
Naphthalenes
;
isolation & purification
;
pharmacology
;
Phytochemicals
;
isolation & purification
;
pharmacology
;
Tobacco
;
Tobacco Mosaic Virus
;
drug effects