1.PHYSIOLOGICAL STUDY OF RACE-WALKING
MINAKO SAITOH ; HIROHIKO KAGAYA ; HIDEKI MORII ; YOSHINAO NAKAGAWA ; NAOTO KIMURA ; HIROYUKI YOSHIDA ; KOICHI HIROTA
Japanese Journal of Physical Fitness and Sports Medicine 1991;40(1):31-40
The purpose of this study was to clarify some of the characteristics of race-walking, especially the relationship between walking speed and oxygen requirement, and stride in race-walking and normal walking, and to examine whether race-walking is effective for the maintenance and promotion of health.
The subjects were five male race-walkers (race-walker group) and five male college students (control group) .
The results obtained were as follows:
1. Under race-walk conditions, the highest speeds attained in the race-walker and control groups were 200-220 m/min and 160 m/min, respectively. Under normal walking conditions, however, the values were 140 m/min in both groups.
2. A lower oxygen requirement was observed at slower speed during normal walking and at a higher speed (over 130 m/min) during race-walking.
3. Oxygen requirement (ml/kg/100 m) in the race-walker group was minimal at 60-80 m/min during race-walking and at 60 m/min during normal walking. Values in the control group were minimal at 60 m/min under both walking conditions.
4. The oxygen requirement in the race-walker group was less than that of the control group under both walking conditions.
5. Under normal walking conditions, as the speed increased, both step-length and step frequency gradually increased, until step-length reached a limit of 80 cm. Thereafter, walking was maintained only by an increase in step frequency. However, in the race-walkes group, the subjects were capable of increasing their step-length further, and maintaining a higher speed (up to 220 m/min) .
6. It was suggested that race-walking is one of the most efficient exercises for maintaining and improving health.
2.Physiological study of race-walking. The relationship between walking speed and oxygen requirement.
MINAKO SAITOH ; HIROHIKO KAGAYA ; HIDEKI MORII ; YOSHINAO NAKAGAWA ; NAOTO KIMURA ; HIROYUKI YOSHIDA ; KOICHI HIROTA
Japanese Journal of Physical Fitness and Sports Medicine 1991;40(1):31-40
The purpose of this study was to clarify some of the characteristics of race-walking, especially the relationship between walking speed and oxygen requirement, and stride in race-walking and normal walking, and to examine whether race-walking is effective for the maintenance and promotion of health.
The subjects were five male race-walkers (race-walker group) and five male college students (control group) .
The results obtained were as follows:
1. Under race-walk conditions, the highest speeds attained in the race-walker and control groups were 200-220 m/min and 160 m/min, respectively. Under normal walking conditions, however, the values were 140 m/min in both groups.
2. A lower oxygen requirement was observed at slower speed during normal walking and at a higher speed (over 130 m/min) during race-walking.
3. Oxygen requirement (ml/kg/100 m) in the race-walker group was minimal at 60-80 m/min during race-walking and at 60 m/min during normal walking. Values in the control group were minimal at 60 m/min under both walking conditions.
4. The oxygen requirement in the race-walker group was less than that of the control group under both walking conditions.
5. Under normal walking conditions, as the speed increased, both step-length and step frequency gradually increased, until step-length reached a limit of 80 cm. Thereafter, walking was maintained only by an increase in step frequency. However, in the race-walkes group, the subjects were capable of increasing their step-length further, and maintaining a higher speed (up to 220 m/min) .
6. It was suggested that race-walking is one of the most efficient exercises for maintaining and improving health.
3.Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors.
Tomoyuki TAKAHASHI ; Yoshinao KAJIKAWA ; Masahiro KIMURA ; Naoto SAITOH ; Tetsuhiro TSUJIMOTO
The Korean Journal of Physiology and Pharmacology 2004;8(2):69-76
A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as GABAB receptors, group III metabotropic glutamate receptors (mGluRs), adenosine A1 receptors, or adrenaline alpha2 receptors, attenuate evoked transmitter release via inhibiting voltage-activated Ca2+ currents without affecting voltage-activated K+ currents or inwardly rectifying K+ currents. Furthermore, inhibition of voltage-activated Ca2+ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of Ca2+ influx. Direct loadings of G protein beta gamma subunit (G beta gamma) into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic Ca2+ currents (IpCa), suggesting that G beta gammamediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.
Adenosine
;
Autoreceptors
;
Brain Stem
;
Epinephrine
;
Glutamic Acid
;
GTP-Binding Proteins*
;
Patch-Clamp Techniques
;
Presynaptic Terminals
;
Receptor, Adenosine A1
;
Receptors, G-Protein-Coupled*
;
Receptors, Metabotropic Glutamate
;
Rodentia
;
Synapses