2.Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans.
Hyun Jeong EOM ; Jae Seong JEONG ; Jinhee CHOI
Environmental Health and Toxicology 2015;30(1):e2015001-
OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.
Caenorhabditis elegans*
;
Caenorhabditis*
;
Carbon*
;
Eating
;
Nanotubes, Carbon*
3.Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans.
Hyun Jeong EOM ; Jae Seong JEONG ; Jinhee CHOI
Environmental Health and Toxicology 2015;30(1):e2015001-
OBJECTIVES: In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. METHODS: The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. RESULTS: The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. CONCLUSIONS: Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.
Caenorhabditis elegans*
;
Caenorhabditis*
;
Carbon*
;
Eating
;
Nanotubes, Carbon*
4.Discerning Trends in Multiplex Immunoassay Technology with Potential for Resource-Limited Settings.
Laboratory Medicine Online 2013;3(1):62-72
BACKGROUND: In the search for more powerful tools for diagnoses of endemic diseases in resource-limited settings, we have been analyzing technologies with potential applicability. Increasingly, the process focuses on readily accessible bodily fluids combined with increasingly powerful multiplex capabilities to unambiguously diagnose a condition without resorting to reliance on a sophisticated reference laboratory. Although these technological advances may well have important implications for the sensitive and specific detection of disease, to date their clinical utility has not been demonstrated, especially in resource-limited settings. Furthermore, many emerging technological developments are in fields of physics or engineering, which are not readily available to or intelligible to clinicians or clinical laboratory scientists. CONTENT: This review provides a look at technology trends that could have applicability to high-sensitivity multiplexed immunoassays in resource-limited settings. Various technologies are explained and assessed according to potential for reaching relevant limits of cost, sensitivity, and multiplex capability. Frequently, such work is reported in technical journals not normally read by clinical scientists, and the authors make enthusiastic claims for the potential of their technology while ignoring potential pitfalls. Thus it is important to draw attention to technical hurdles that authors may not be publicizing. SUMMARY: Immunochromatographic assays, optical methods including those involving waveguides, electrochemical methods, magnetorestrictive methods, and field-effect transistor methods based on nanotubes, nanowires, and nanoribbons reveal possibilities as next-generation technologies.
Endemic Diseases
;
Health Resorts
;
Immunoassay
;
Immunochromatography
;
Nanotubes
;
Nanotubes, Carbon
;
Nanowires
5.Current researches on the mechanisms of carbon nanotubes entering cells and their location in the cells.
Journal of Biomedical Engineering 2010;27(1):198-210
Carbon nanotube (CNT) is an important class of artificial nanomaterials with diverse potentials of nanobiomedical application. Before being introduced into bio-systems, it is necessary to explore the behavior and fate of CNTs in cells. However, limited understandings or information has been currently obtained in this realm, even some experimental results from different labs are conflicted. In this review, we focused on the location of CNTs in various cells as well as on the mechanisms of CNTs crossing the cell membranes. On the basis of data analysis shown by the current literatures, it was suggested that CNTs could enter cell's nucleus in certain conditions. Endocytosis and diffusion both exist; however, in some cases, one of them exhibited as major path, while the other one was not detectable because of the challenge resulting from the complex biological environments. The obstacles to powerful and standard characterizations of CNTs have also been discussed.
Cells
;
metabolism
;
Diffusion
;
Endocytosis
;
Nanotubes, Carbon
;
chemistry
7.Study of the adsorption behaviors of plasma proteins on the single-walled carbon nanotubes nonwoven.
Jie MENG ; Li SONG ; Jie MENG ; Hua KONG ; Chaoying WANG ; Xiaotian GUO ; Haiyan XU ; Sishen XIE
Journal of Biomedical Engineering 2007;24(1):55-60
Single walled carbon nanotubes (SWNT) have attracted increasing research interests for the purpose of biomedical application because they provide not only nanostructured topography, but also chemical composition of pure carbon atoms, as well as ultra high strength and excellent flexibility. Regarding the interactions of nanomaterials to biological systems, non-specific adsorption of plasma proteins is one of the most important issues to be concerned, which plays a crucial role that would determine how biological systems response to the biomaterials. Motivated by application of SWNT materials in biomedical fields, in this study, the adsorption behaviors of plasma proteins on the surface of SWNT nonwoven, prepared directly by floating chemical vapor observation and energy deposition method were investigated by means of scanning electron microscope (SEM), dispersive X-ray (EDX) analysis and ELISA. Results indicated the SWNT non-woven showed a clear adsorption preference of fibrinogen over albumin. There was no human serum albumin detected using above analysis methods on the SWNT nonwoven even incubated in the albumin solution of 4 mg/ml. While more than 0.15 microg of human fibrinogen was detected by ELISA on the SWNT nonwoven with area of 40 mm x 40 mm incubated in the fibrinogen solution of 5 microg/ml. In addition, IgG of sheep-anti-human serum fibrinogen exhibited strong nonspecific adsorption on the surface of SWNT nonwoven. The adsorption behaviors are different significantly from those of other carbon materials and conventional biomaterials. The unique interaction of SWNT nonwoven to plasma proteins is of significance to further studies of blood cells responses.
Adsorption
;
Biocompatible Materials
;
chemistry
;
Blood Proteins
;
chemistry
;
Nanotubes, Carbon
;
chemistry
;
Surface Properties
8.The biocompatibility of carbon nanotubes.
Journal of Biomedical Engineering 2008;25(3):742-746
Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, namely single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) both possess the characteristics of high tensile strength, ultra-light weight, and excellent chemical and thermal stability. They also possess the semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field. However, it is only recently that information on toxicity and biocompatibility has become available. Herein is presented a review on the toxicity and biocompatibility of carbon nanotubes.
Animals
;
Biocompatible Materials
;
toxicity
;
Humans
;
Materials Testing
;
Nanotubes, Carbon
;
toxicity
;
Toxicity Tests
9.Single wall carbon nanotube induced inflammation in cruor-fibrinolysis system.
Lei TIAN ; Zhi Qing LIN ; Ben Cheng LIN ; Huan Liang LIU ; Jun YAN ; Zhu Ge XI
Biomedical and Environmental Sciences 2013;26(5):338-345
OBJECTIVETo study single wall carbon nanotubes (SWCNT) and its role in inducing inflammatory cytokines in the cruor-fibrinolysis system of rat.
METHODSTwenty one Wistar rats were divided into four groups: 1) control; 2) low-dose SWCNT (0.15 mg/kg BW); 3) medium-dose SWCNT (0.75 mg/kg BW); 4) high-dose SWCNT (1.5 mg/kg BW). Intratracheal instillation of SWCNT suspensions was administered to rats once per day for 21 days. In order to assess the exposure effect of SWCNT to the rats, activity of Inflammatory cytokine was measured and markers of cruor-fibrinolysis system were studied via ELSIA. Also, change in clotting time was recorded and histopathology was studied.
RESULTSIL-6 and IL-8 concentrations of rats exposed to SWCNT were significantly higher than those in controls (P<0.05). The activity of inflammatory cytokines and histopathological change indicated that oxidative damage occurred. Change in clotting time in rats exposed to SWCNT decreased compared with controls. Meanwhile, t-PA (tissue-tupe plassminogen activator) and AT-III (antithrombin-III) levels in rats exposed to particulates increased or decreased significantly compared with controls (P<0.05). A similar trend was observed for D-dimer (D2D) levels, indicating that SWCNT can impact the cruor-fibrinolysis system of rat.
CONCLUSIONThe results from our study suggest that an increased procoagulant activity and reduced fibrinolytic activity in rats exposed to SWCNT can cause pulmonary oxidative stress and inflammation, due to the release of pro-thrombotic and inflammatory cytokines into the blood circulation of rat.
Animals ; Blood Coagulation ; Body Weight ; Cytokines ; metabolism ; Fibrinolysis ; Inflammation ; etiology ; metabolism ; Nanotubes, Carbon ; Rats ; Rats, Wistar
10.Detection of sterigmatocystin based on the novel aflatoxin-oxidase/chitosan-single-walled carbon nanotubes/poly-o-phenylenediamine modified electrode.
Junhua CHEN ; Shichuan LI ; Dongsheng YAO ; Daling LIU
Chinese Journal of Biotechnology 2009;25(12):2029-2035
A sensitive electrochemical biosensor based on Aflatoxin-Oxidase (AFO) was developed for detection of sterigmatocystin (ST). The enzyme was immobilized on chitosan-single-walled carbon nanotubes (CS-SWCNTs) hybrid film, which attached to the poly-o-phenylenediamine (POPD)-modified Au electrode. The fabricated procedures of the biosensor were characterized with atomic force microscopy (AFM), fourier transform-infrared spectroscopy (FT-IR), and electrochemical impedance spectroscopy (EIS). The cyclic voltammetric results of the biosensor indicated that AFO exhibited a surface-controlled and quasi-reversible electrochemical redox behavior with a formal potential of -0.436 V (vs. Ag/AgCl) in 0.1 mol/L PBS (pH 7.0), which resulted from the direct electron transfer between entrapped AFO and the underlying electrode. The enzymatic electrode exhibited an excellent electrocatalytic response to ST. The linear range of ST determination was from 10 ng/mL to 310 ng/mL with correlation coefficient of 0.997, the detection limit was 3 ng/mL (S/N=3), and the response time was less than 10 seconds. The apparent Michaelis-Menten constant (K(M)app) was estimated to be 7.13 micromol/L. The biosensor had the advantages of good repeatability and stability, remaining 85.6% of its original current value after storage at 4 degrees C for a month, and the RSD for 11 replicate determination of 20 ng/mL ST was 3.9%. This AFO/CS-SWCNTs/POPD/Au modified electrode showed high selectivity and sensitivity in real sample analysis, giving values of recovery in the range of 87.6%-105.5%. The proposed method can be applied to the determination of ST in real samples with satisfactory results.
Aflatoxins
;
Biosensing Techniques
;
methods
;
Chitosan
;
chemistry
;
Electrons
;
Nanotubes, Carbon
;
Oxidation-Reduction
;
Oxidoreductases
;
Phenylenediamines
;
chemistry
;
Sterigmatocystin
;
analysis