2.Research progress on plant-derived exosome-like nanoparticles and their applications.
Lin-Si PAN ; Wen-Cai WANG ; Meng-Yu YAO ; Xiao-Yan WANG ; Xian-Zhi ZHANG
China Journal of Chinese Materia Medica 2023;48(22):5977-5984
Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.
Animals
;
Exosomes/metabolism*
;
Proteins/metabolism*
;
Plants/metabolism*
;
Nucleic Acids
;
Nanoparticles
3.Research progress on the effect of iron oxide nanoparticles in macrophage polarization.
Haojie ZHANG ; Xinyu ZHANG ; Yachan FENG ; Chao DU ; Yingze WANG ; Xueling GUO
Journal of Biomedical Engineering 2023;40(2):384-391
Macrophages are important immune effector cells with significant plasticity and heterogeneity in the body immune system, and play an important role in normal physiological conditions and in the process of inflammation. It has been found that macrophage polarization involves a variety of cytokines and is a key link in immune regulation. Targeting macrophages by nanoparticles has a certain impact on the occurrence and development of a variety of diseases. Due to its characteristics, iron oxide nanoparticles have been used as the medium and carrier for cancer diagnosis and treatment, making full use of the special microenvironment of tumors to actively or passively aggregate drugs in tumor tissues, which has a good application prospect. However, the specific regulatory mechanism of reprogramming macrophages using iron oxide nanoparticles remains to be further explored. In this paper, the classification, polarization effect and metabolic mechanism of macrophages were firstly described. Secondly, the application of iron oxide nanoparticles and the induction of macrophage reprogramming were reviewed. Finally, the research prospect and difficulties and challenges of iron oxide nanoparticles were discussed to provide basic data and theoretical support for further research on the mechanism of the polarization effect of nanoparticles on macrophages.
Humans
;
Macrophages/metabolism*
;
Cytokines
;
Inflammation
;
Neoplasms/metabolism*
;
Nanoparticles
;
Magnetic Iron Oxide Nanoparticles
;
Tumor Microenvironment
4.Effect of exogenous CdS nanoparticle on the growth of Escherichia coli.
Jie WANG ; Yue YANG ; Daizong CUI ; Min ZHAO
Chinese Journal of Biotechnology 2022;38(12):4681-4691
Semiconductor nanoparticles generate photoelectrons and photo-induced holes under light excitation, and thus may influence the growth of microbial cells. The highly oxidative holes may severely damage the cells, while the photoelectrons may promote microbial metabolism. In this study, we evaluated the effect of exogenous cadmium sulfide (CdS) nanoparticles on bacterial growth using OD600 and colony forming unit (CFU) as indicators. The oxidase activities, the concentration of pyruvate and malondialdehyde, and the expression of relevant genes assessed by real-time fluorescent quantitative PCR were analyzed to investigate the effect of excited CdS on cellular metabolism. The results showed that the OD600 and pyruvate accumulation of E. coli increased by 32.4% and 34.6%, respectively, under light conditions. Moreover, the relative expression level of the division protein gene ftsZ was increased more than 50%, and the tricarboxylic acid cycle pathway gene icdA and gltA increased by 86% and 103%, respectively. The results indicated that photoelectrons could be used by microorganisms, resulting in promoted growth and metabolism. This study gives a deep insight into the interaction between nanoparticles and bacteria.
Escherichia coli/metabolism*
;
Nanoparticles
;
Cadmium Compounds/metabolism*
;
Quantum Dots
5.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
6.Comparative Toxicity of Nanomaterials to Air-blood Barrier Permeability Using an In Vitro Model.
Kang Feng ZHAO ; Yu Qing SONG ; Rui Hua ZHANG ; Xiao Yan YANG ; Bo SUN ; Zhi Quan HOU ; Xiao Ping PU ; Hong Xing DAI ; Xue Tao BAI
Biomedical and Environmental Sciences 2019;32(8):602-613
OBJECTIVE:
To comparatively study the toxicity of four metal-containing nanoparticles (MNPs) and their chemical counterparts to the air-blood barrier (ABB) permeability using an in vitro model.
METHODS:
ABB model, which was developed via the co-culturing of A549 and pulmonary capillary endothelium, was exposed to spherical CuO-NPs (divided into CuO-40, CuO-80, and CuO-100 based on particle size), nano-Al2O3 (sheet and short-rod-shaped), nano-ZnO, nano-PbS, CuSO4, Al2(SO4)3, Zn(CH3COO)2, and Pb(NO3)2 for 60 min. Every 10 min following exposure, the cumulative cleared volume (ΔTCL) of Lucifer yellow by the model was calculated. A clearance curve was established using linear regression analysis of ΔTCL versus time. Permeability coefficient (P) was calculated based on the slope of the curve to represent the degree of change in the ABB permeability.
RESULTS:
The results found the increased P values of CuO-40, CuO-80, sheet, and short-rod-shaped nano-Al2O3, Al2(SO4)3, and Pb(NO3)2. Among them, small CuO-40 and CuO-80 were stronger than CuO-100 and CuSO4; no difference was observed between Al2(SO4)3 and sheet and short-rod-shaped nano-Al2O3; and nano-PbS was slightly weaker than Pb(NO3)2. So clearly the MNPs possess diverse toxicity.
CONCLUSION
ABB permeability abnormality means pulmonary toxicity potential. More studies are warranted to understand MNPs toxicity and ultimately control the health hazards.
A549 Cells
;
Blood-Air Barrier
;
metabolism
;
Epithelium
;
metabolism
;
Humans
;
Metal Nanoparticles
;
toxicity
;
Particle Size
;
Permeability
7.Effect of nanoparticles of different stiffness combined with menthol/curcumol on mechanical properties of bEnd.3 cells.
Zi-Shuo GUO ; Yi ZHANG ; Kai-Li YANG ; Di-Lei WANG ; Wan-Ling CHEN ; Xiao-Jing WANG ; Lin-Ying ZHONG ; Peng-Yue LI ; Shou-Ying DU
China Journal of Chinese Materia Medica 2023;48(2):390-398
This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.
Animals
;
Mice
;
Menthol/pharmacology*
;
Actins/metabolism*
;
Endothelial Cells/metabolism*
;
Nanoparticles/chemistry*
9.Ca(2+) is an important mediator of nanosecond steep pulse-induced apoptosis in human ovarian cancer SKOV3 cells.
Li-juan LIU ; Dong-yang ZHAO ; Jian WANG ; Cheng-guo YAO ; Cai-xin SUN ; Jun-ying TANG
Journal of Southern Medical University 2011;31(5):772-776
OBJECTIVETo explore the role of Ca(2+) in nanosecond steep pulse (NSP)-induced apoptosis of human ovarian carcinoma cell line SKOV3 in vitro.
METHODSThe early apoptotic rate of SKOV3 cells treated with NSP was detected by Annexin V/PI double staining and flow cytometry. MTT assay was used to detect the viability of the cells pretreated with BAPTA-AM (0, 25, 50 and 100 µmol/L) chelation for 1 h to increase the intracellular free Ca(2+) prior to NSP exposure, and the cell morphological changes and caspase 12 expression were detected using Hoechst 33342 staining and Western blotting, respectively.
RESULTSFlow cytometry showed that NSP induced early apoptosis of SKOV3 cells, and the optimal effect was achieved with the treatment parameter configuration of field strength of 90 kV/cm, pulse width of 100 ns, frequency of 1 Hz, and exposure time of 30 s. The highest early apoptotic rate and necrosis rate was (60.31∓5.67)% and (1.35∓0.39)%, respectively. Pretreatment with BAPTA-AM chelation prior to NSP exposure significantly increased the cell viability (P<0.05), and resulted also in lowered apoptosis rate and decreased expression of caspase 12 (P<0.05).
CONCLUSIONNSP can induce apoptosis in SKOV3 cells. Increased intracellular free Ca(2+) functions as an important mediator in NSP-induced cell apoptosis, which may also involve Ca(2+)-mediated endo- plasmic reticulum pathway.
Apoptosis ; Calcium ; chemistry ; pharmacology ; Cell Line, Tumor ; Female ; Humans ; Nanoparticles ; Ovarian Neoplasms ; metabolism ; pathology
10.Metabonomic study of plasma after intratracheally instilling titanium dioxide nanoparticles in rats.
Shu WANG ; Meng TANG ; Ting ZHANG ; Ming-ming HUANG ; Hao LEI ; Yang YANG ; Min-yu LU ; Lu KONG ; Yu-ying XUE
Chinese Journal of Preventive Medicine 2009;43(5):399-403
OBJECTIVE1H magnetic resonance (1H MR) spectroscopic technique in combination with pattern recognition technique were applied to analyze toxic effects of rats which were intratracheally instilled with titanium dioxide nanoparticles (nano-TiO2) as well as to detect the target organs and biomarkers associated with the toxic effects.
METHODSTwenty-four SD male rats were divided into 4 groups randomly which were high dose group (40 mg/kg nano-TiO2), moderate dose group (4 mg/kg nano-TiO2), low dose group (0.4 mg/kg nano-TiO2) and control group (0.9% NaCl solution) respectively, there were six rats per group. All rats were exposed to the object by single intratracheally instilling at a volume of 0.1 ml/100 g. After one week observation, 1H MR spectra of plasma were measured and analyzed by principal component analysis. Histopathologic examination for tissues such as heart, lung, liver, and kidney were performed simultaneously.
RESULTSThe relative content of lactate [(37.86+/-2.58)x10(-3)], citrate [(2.21+/-0.45)x10(-3)], choline [(7.74+/-0.76)x10(-3)] and creatine [(4.17+/-1.15)x10(-3)] in high dose group were significantly decreased as compared with those [(52.07+/-5.12)x10(-3), (3.01+/-0.21)x10(-3), (9.28+/-0.78)x10(-3), (8.59+/-2.64)x10(-3)] in control group (t values were -6.024, -3.177, -3.374, -4.215 respectively, P<0.05), however the relative content of glucose [(19.41+/-1.72)x10(-3)] was significantly increased compared with that [(14.45+/-2.45)x10(-3)] in control group (t value was 2.802, P<0.05). The relative content of lactate [(44.39+/-5.09)x10(-3)] and creatine [(3.67+/-0.76)x10(-3)] in moderate group was significantly decreased compared with those [(52.07+/-5.12)x10(-3), (8.59+/-2.64)x10(-3)] in control group (t values were -3.254, -4.694 respectively, P<0.05). The relative content of pyruvate [(3.84+/-0.70)x10(-3)] was significantly increased in low dose group as compared with that [(3.13+/-0.46)x10(-3)] in control group (t value was 2.787, P<0.05), however the relative content of creatine [(8.10+/-0.72)x10(-3)] was significantly decreased compared with that [(9.28+/-0.78)x10(-3)] in control group (t value was -2.602, P<0.05). No significant difference was found between other experimental groups and control group. No visible damage was found in histopathologic examination.
CONCLUSIONLung, liver, kidney and heart were the target organs of rats which were intratracheally instilling titanium dioxide nanoparticles. Lactate, pyruvate, glucose, citrate, choline and creatine can be presumed as the biomarkers when searching the target organs of the toxic effects.
Animals ; Male ; Metal Nanoparticles ; Plasma ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Titanium ; administration & dosage ; toxicity