1.SMAD2/3-SMYD2 and developmental transcription factors cooperate with cell-cycle inhibitors to guide tissue formation.
Stefania MILITI ; Reshma NIBHANI ; Martin POOK ; Siim PAUKLIN
Protein & Cell 2025;16(4):260-285
Tissue formation and organ homeostasis are achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin-dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFβ signaling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell-fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms of how cell-fate specification is interconnected to cell-cycle dynamics and provides insight into autonomous circuitries governing tissue self-formation.
Humans
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*
;
Cell Differentiation
;
Pluripotent Stem Cells/metabolism*
;
Signal Transduction
;
Octamer Transcription Factor-3/genetics*
;
Enhancer of Zeste Homolog 2 Protein/genetics*
;
Nanog Homeobox Protein/genetics*
;
Phosphorylation
2.Effect of OCT4 Gene Expression Upregulation on the Expression of iPSC-related Transcription Factors in Human Bone Marrow Derived Mesenchymal Stem Cells.
Journal of Experimental Hematology 2020;28(4):1086-1095
OBJECTIVE:
To explore the effect of OCT4 over-expression on the expression of induced pluripotent stem cell (iPSC)-related transcription factors (cMYC,KLF4,LIN28,NANOG and SOX2) in human bone marrow derived mesenchymal stem cells (hBMMSCs), so as to provide fundamental basis for exploring the pathogenesis of hematological diseases (leukemia, aplastic anemia, etc.) from the perspective of hemopoietic microenvironment in the future.
METHODS:
Recombinant plasmid pcDNA3.1-OCT4 was constructed and transferred into the optimal generation P3-4 hBMMSCs by liposome transfection. The cells with stable and high expression of OCT4(hBMMSCs-OCT4)were screened by G418 resistance screening (limited dilution) and subcloning, the expression of OCT4 mRNA and OCT4 protein was verified by RT-PCR and FCM, respectively. The expression of iPSC-related transcription factors (cMYC, KLF4, LIN28, NANOG and SOX2) were also determined by FCM and RT-PCR, so as to evaluate the effect of ectopic high expression of OCT4 on the expression of iPSC related transcription factors in hBMMSCs.
RESULTS:
Recombinant plasmid pcDNA3.1-OCT4 was successfully constructed and cells with stable and high expression of OCT4 were successfully screened from hBMMSCs by limited dilution and subcloning. The result of flow cytometry showed that the mean expression level of OCT4 protein increased from (3.03±1.49)% to (95.46±1.40)% compared with the untransfected parental MSCs, which was also confirmed by RT-PCR analysis. At the same time, the expression levels of OCT4 protein and mRNA were compared between transient transfection (day 4) and stable expression cells (day 96), respectively, it was showed that the OCT4 protein level increased from (36.36±0.28)% at day 4 to (96.25±1.38)% at day 96, and the OCT4 mRNA level increased from 2.75-folds to 6.23-folds, respectively. Compared with the untransfected parental MSCs, the average expression levels of stemness transcription factors increased from (1.12±0.47)% (cMYC), (0.84±0.30)% (KLF4), (2.14±0.79)% (LIN28), (0.63±0.37)% (NANOG) and (14.34±2.44)% (SOX2) to (80.65±4.75)%, (73.03±4.70)%, (68.08±3.05)%, (39.39±1.85)%and (91.45±4.56)% in hBMMSCs-OCT4, respectively, which were consistent with results of RT-PCR analysis. Moreover, the expression levels of NANOG and SOX2 positively correlated with the mean expression of OCT4 (OCT4 vs NANOG: r=0.7802,OCT4 vs SOX2: r=0.4981;NANOG vs SOX2: r=0.7426).
CONCLUSION
Cells with stable and high expression of OCT4 have been successfully established from hBMMSCs. Ectopic high expression of transcription factor OCT4 in hBMMSCs can up-regulate the expression of other iPSC-related transcription factors such as cMYC, KLF4, LIN28, NANOG and SOX2.
Bone Marrow
;
Humans
;
Induced Pluripotent Stem Cells
;
Mesenchymal Stem Cells
;
Nanog Homeobox Protein
;
genetics
;
Octamer Transcription Factor-3
;
genetics
;
Transcription Factors
;
Up-Regulation
3.NANOG Alleviates the Damage of Human Hair Follicle Mesenchymal Stem Cells Caused by H2O2 through Activation of AKT Pathway.
Jia Hong SHI ; Kui Yang ZUO ; Ying Yao ZHANG ; Bo WANG ; Xing HAN ; Ao Bo LIAN ; Jin Yu LIU
Biomedical and Environmental Sciences 2019;32(4):272-280
OBJECTIVE:
To explore the protective effect of NANOG against hydrogen peroxide (H2O2) -induced cell damage in the human hair follicle mesenchymal stem cells (hHF-MSCs).
METHODS:
NANOG was expressed from a lentiviral vector, pLVX-IRES-ZsGreen. NANOG hHF-MSCs and vector hHF-MSCs were treated with 400 μmol/L hydrogen peroxide (H2O2) for 2 h, the cell survival rate, cell morphology, ROS production, apoptosis and expression of AKT, ERK, and p21 were determined and compared.
RESULTS:
Our results showed that NANOG could activate AKT and upregulate the expression of p-AKT, but not p-ERK. When treated with 400 μmol/L H2O2, NANOG hHF-MSCs showed higher cell survival rate, lower ROS production and apoptosis, higher expression of p-AKT, higher ratio of p-AKT/AKT.
CONCLUSION
Our results suggest that NANOG could protect hHF-MSCs against cell damage caused by H2O2 through activating AKT signaling pathway.
Cell Survival
;
Drug Evaluation, Preclinical
;
Hair Follicle
;
cytology
;
Humans
;
Hydrogen Peroxide
;
Lentivirus
;
Mesenchymal Stem Cells
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
metabolism
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Signal Transduction
4.Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer
Liuping YOU ; Xin GUO ; Yuenan HUANG
Yonsei Medical Journal 2018;59(1):35-42
PURPOSE: To investigate the association of cancer stem-cell markers [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), and Nanog homebox (NANOG)] expression with clinicopathological properties and overall survival (OS) in operative rectal cancer (RC) patients receiving adjuvant therapy. MATERIALS AND METHODS: 153 patients with primary RC receiving surgery were enrolled. Tumor tissue and paired adjacent normal tissue sample were collected, and OCT4, SOX2, and NANOG expressions were assessed by immunofluorescent staining. The median follow-up duration was 5.2 years, and the last follow-up date was August 2016. RESULTS: Tumor tissue OCT4 (p < 0.001), SOX2 (p=0.003), and NANOG (p < 0.001) expressions were higher than those in adjacent tissue. OCT4 expression was positively correlated with pathological grade (R=0.185, p=0.022), tumor size (R=0.224, p=0.005), and N stage (R=0.170, p=0.036). NANOG expression was positively associated with tumor size (R=0.169, p=0.036). Kaplan-Meier suggested that OCT4+ was associated with worse OS compared with OCT4− (p < 0.001), while no association of SOX2 (p=0.121) and NANOG expressions (p=0.195) with OS was uncovered. Compared with one or no positive marker, at least two positive markers were associated with shorter OS (p < 0.001), while all three positive markers were correlated with worse OS compared with two or less positive markers (p < 0.001). Multivariate Cox's analysis revealed that OCT4+ (p < 0.001) and N stage (p=0.046) were independent factors for shorter OS. CONCLUSION: Tumor tissue OCT4 expression was correlated with poor differentiation, tumor size, and N stage, and it can serve as an independent prognostic biomarker in operative patients with RC receiving adjuvant therapy.
Aged
;
Biomarkers, Tumor/metabolism
;
Female
;
Humans
;
Male
;
Multivariate Analysis
;
Nanog Homeobox Protein/metabolism
;
Neoplastic Stem Cells/metabolism
;
Octamer Transcription Factor-3/metabolism
;
Prognosis
;
Rectal Neoplasms/metabolism
;
Rectal Neoplasms/pathology
;
Rectal Neoplasms/surgery
;
SOXB1 Transcription Factors/metabolism
;
Survival Analysis
5.An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.
Jianying GUO ; Dacheng MA ; Rujin HUANG ; Jia MING ; Min YE ; Kehkooi KEE ; Zhen XIE ; Jie NA
Protein & Cell 2017;8(5):379-393
Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.
Animals
;
Cell Line
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Doxycycline
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Human Embryonic Stem Cells
;
metabolism
;
Humans
;
Mice
;
Nanog Homeobox Protein
;
biosynthesis
;
genetics
;
Pluripotent Stem Cells
;
metabolism
6.Thymosin β4 impeded murine stem cell proliferation with an intact cardiovascular differentiation.
Li NIE ; Shi-Jun GAO ; Ya-Nan ZHAO ; Jacob MASIKA ; Hong-Yan LUO ; Xin-Wu HU ; Liang-Pin ZHANG ; Ying ZENG ; Jürgen HESCHELER ; Hua-Min LIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):328-334
Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs. Target genes during mESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the mESCs-derived cardiomyocytes. It was found that Tβ4 decreased mESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, mESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these mESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant β-catenin. Under mESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of mESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed mESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
Animals
;
Cell Cycle
;
drug effects
;
genetics
;
Cell Differentiation
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
Extracellular Signal-Regulated MAP Kinases
;
genetics
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
JNK Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
genetics
;
metabolism
;
Octamer Transcription Factor-3
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
Primary Cell Culture
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-fos
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
Thymosin
;
pharmacology
7.Nanog promotes the invasion of breast cancer cells by increasing PKCε expression.
Wen-Feng SHAO ; Fu-Xi LI ; Rui TANG ; Xiao-Ran YU ; Qiao-Sheng WEN ; Yan-Lin YU ; Jing-Bo XIONG
Journal of Southern Medical University 2016;36(5):639-644
OBJECTIVETo study the relationship between Nanog-promoted metastasis of breast cancer and ezrin(T567) phosphorylation, and explore the possible mechanism by which Nanog regulates ezrin(T567) phosphorylation.
METHODSA siRNA construct targeting Nanog was transfected in breast cancer cells to knock down Nanog expression, and the changes in the cell invasion was detected using Transwell assay. The expression levels of Nanog and PKC and the phosphorylation level of ezrin(T567) were detected using Western blotting and immunofluorescent staining; the protein interaction between PKCε and ezrin was assayed by co-immunoprecipitation and Western blotting.
RESULTSNanog knockdown significantly decreased the expression of PKCε protein, phosphorylation level of ezrin(T567) and the invasion ability of breast cancer cells. PKCε knockdown obviously decreased the phosphorylation level of ezrin(T567) in the cells, and PKCε and ezrin were co-immunoprecipitated.
CONCLUDIONSNanogcan can upregulate the expression of PKCε to promote the phosphorylation of ezrin(T567), which can be a new mechanism by which Nanog promotes tumor metastasis.
Blotting, Western ; Breast Neoplasms ; metabolism ; Cytoskeletal Proteins ; metabolism ; Gene Knockdown Techniques ; Homeodomain Proteins ; metabolism ; Humans ; Nanog Homeobox Protein ; Neoplasm Invasiveness ; Phosphorylation ; Protein Kinase C-epsilon ; metabolism ; RNA, Small Interfering ; Transfection ; Tumor Cells, Cultured ; Up-Regulation
8.Expression of NANOG gene in acute lymphoblastic leukemia cells and construction of lentiviral vector carrying NANOG specific shRNA.
Jiang CAO ; Fan-Jing MENG ; Li LI ; Chao LU ; Jun ZHOU ; Hai CHENG ; Wei CHEN ; Chong CHEN ; Kai-Lin XU
Journal of Experimental Hematology 2014;22(2):275-279
The aim of this study was to detect the expression of NANOG gene in acute lymphoblastic leukemia (ALL) cells, and to construct the lentiviral vector carrying NANOG specific shRNA. The expression of NANOG was detected by RT-PCR and Western blot in MOLT-4, CCRF-HSB2, Jurkat cells and bone marrow cells from 15 patients with ALL in our hospital. The lentiviral vector carrying NANOG specific shRNA was constructed. After infection of MOLT-4 cells with the lentivirus constructs, GFP (+) cells were harvested by flow cytometry. The efficiency of RNA interference was detected by real-time quantitative PCR and Western blot. The results showed that the expression of NANOG mRNA and protein was detected in MOLT-4, CCRF-HSB2 cells and 33.3% samples of bone marrow from patients with ALL. The sequencing results demonstrated that the mRNAs amplified from these leukemic cells showed higher homology to NANOGP8 than NANOG1. The lentiviral vector pLB-shNANOG-1, pLB-shNANOG-2 and pLB-shcontrol were constructed. The viral particles were harvested and concentrated by ultracentrifugation. The virus titers were (1.83-3.12) ×10(8) IU/ml. After infection of MOLT-4 cells with the lentivirus, flow cytometry detection indicated that the GFP(+) cells were harvested by real-time quantitative PCR and Western blot, the assays showed that the 2 designed shRNA could significantly down-regulate expression of NANOG gene and protein. It is concluded that NANOGP8 is expressed in various types of ALL cells and in 33.3% of marrow cell samples obtained from ALL patients. After infection with the lentivirus constructs, MOLT-4 cells which stably down-regulate the expression of NANOG mRNA are obtained.
Adult
;
Case-Control Studies
;
Cell Line, Tumor
;
Female
;
Genetic Vectors
;
Homeodomain Proteins
;
genetics
;
Humans
;
Lentivirus
;
genetics
;
Male
;
Middle Aged
;
Nanog Homeobox Protein
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
RNA, Messenger
;
genetics
;
RNA, Small Interfering
;
Young Adult
9.Tricostantin A inhibits self-renewal of breast cancer stem cells in vitro.
Li PENG ; Fu-Xi LI ; Wen-Feng SHAO ; Jing-Bo XIONG
Journal of Southern Medical University 2013;33(10):1421-1426
OBJECTIVETo investigate the effect of tricostantin A (TSA) on self-renewal of breast cancer stem cells and explore the mechanisms.
METHODSBreast cancer cell lines MDA-MB-468, MDA-MB-231, MCF-7 and SKBR3 were cultured in suspension and treated with different concentrations of TSA for 7 days, using 0.1% DMSO as the control. Secondary mammosphere formation efficiency and percentage of CD44(+)/CD24(-) sub-population in the primary mammospheres were used to evaluate the effects of TSA on self-renewal of breast cancer stem cells. The breast cancer stem cell surface marker CD44(+)/CD24(-) and the percentage of apoptosis in the primary mammospheres were assayed using flow cytometry. The mRNA expressions of Nanog, Sox2 and Oct4 in the primary mammospheres were assayed with quantitative PCR.
RESULTSTSA at both 100 and 500 nmol/L, but not at 10 nmol/L, partially inhibited the self-renewal of breast cancer stem cells from the 4 cell lines. TSA at 500 nmol/L induced cell apoptosis in the primary mammospheres. TSA down-regulated the mRNA expression of Nanog and Sox2 in the primary mammospheres.
CONCLUSIONTSA can partially inhibit the self-renewal of breast cancer stem cells through a mechanism involving the down-regulation of Nanog and Sox2 expression, indicating the value of combined treatments with low-dose TSA and other anticancer drugs to achieve maximum inhibition of breast cancer stem cell self-renewal. The core transcriptional factor of embryonic stem cells Nanog and Sox2 can be potential targets of anticancer therapy.
Antineoplastic Agents ; administration & dosage ; pharmacology ; Apoptosis ; drug effects ; Breast Neoplasms ; metabolism ; pathology ; CD24 Antigen ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; Down-Regulation ; Female ; Histone Deacetylase Inhibitors ; administration & dosage ; pharmacology ; Homeodomain Proteins ; genetics ; metabolism ; Humans ; Hyaluronan Receptors ; metabolism ; Hydroxamic Acids ; administration & dosage ; pharmacology ; Nanog Homeobox Protein ; Neoplastic Stem Cells ; metabolism ; pathology ; RNA, Messenger ; metabolism ; SOXB1 Transcription Factors ; genetics ; metabolism
10.Inhibitory effect and significance of rapamycin on the mammalian target of rapamycin signaling pathway in osteosarcoma stem cells and osteosarcoma cells.
Pei-yi LIU ; Wei-bin ZHANG ; Jun WANG ; Yu-hui SHEN ; Yi-yong WEI
Chinese Journal of Oncology 2013;35(3):175-180
OBJECTIVETo observe the effect of rapamycin on the MG-63 osteosarcoma cells (OC), osteosarcoma stem cells (OSC) and on mTOR signaling pathway, and explore the feasibility of rapamycin as a novel therapeutic measure in osteosarcoma chemotherapy regimens.
METHODSOC and OSC were cultured in vitro. Immunofluorescence assay was used to detect the expression of Nanog and Oct4 in OC and OSC. OC and OSC were treated with rapamycin in concentrations of 0, 20, 50 and 100 nmol/L. Semi-quantitative PCR and RT-PCR were used to detect the mTOR mRNA and CCK-8 assay was used to detect cell proliferation, and the cell morphology was observed under an inverted microscope.
RESULTSThe cores of MG-63 cellular spheres exhibited embryonic stem cell characteristics such as Nanog and Oct4 expession. The mTOR pathway was activated in the OSC and the expression of mTOR mRNA was higher in OSC (0.761 ± 0.080) than that in OS (0.406 ± 0.090, P < 0.05) by semi-quantitative PCR. RT-PCR showed that the expression of mTOR mRNA was lower in OSCs treated with 100 nmol/L rapamycin (0.961 ± 0.060) than that with 0 nmol/L rapamycin (1.654 ± 0.246, P < 0.05). Cell counting kit-8 (CCK-8) assay showed that the proliferation of OC treated with 20, 50 and 100 nmol/L rapamycin was significantly inhibited, compared with that with 0 nmol/L rapamycin (P < 0.05). Compared with 0 nmol/L rapamycin, the proliferation of OSC treated with 20 and 50 nmol/L rapamycin was not significantly inhibited (P > 0.05), but that with 100 nmol/L rapamycin was significantly inhibited (P < 0.05). The invert microscopic observation revealed that rapamycin inhibited the formation of OSC spheres.
CONCLUSIONSRapamycin can effectively inhibit cell proliferation and the ability of sphere formation of OSCs. It will provide a basis for a novel therapeutic approach in osteosarcoma chemotherapy regimens.
Antibiotics, Antineoplastic ; administration & dosage ; pharmacology ; Bone Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Cells, Cultured ; Dose-Response Relationship, Drug ; Homeodomain Proteins ; metabolism ; Humans ; Nanog Homeobox Protein ; Neoplastic Stem Cells ; metabolism ; pathology ; Octamer Transcription Factor-3 ; metabolism ; Osteosarcoma ; metabolism ; pathology ; RNA, Messenger ; metabolism ; Signal Transduction ; Sirolimus ; administration & dosage ; pharmacology ; TOR Serine-Threonine Kinases ; genetics ; metabolism

Result Analysis
Print
Save
E-mail