1.Prenatal Mental Health and Its Stress-Process Mechanisms During a Pandemic Lockdown: A Moderated Parallel Mediation Model
Man JIANG ; Lei CHEN ; Nan TUO ; Dongjian YANG ; Shimeng LIU ; Zhen HUANG
Psychiatry Investigation 2025;22(3):221-230
Objective:
Hundreds of countries have implemented lockdown policies to slow the spread of coronavirus disease-2019 (COVID-19), but the impact of these measures on maternal mental health is not well understood.
Methods:
This study integrated a stress-process model to examine the pathways from lockdown-related stressors to prenatal psychological outcomes, with COVID-19 coping strategies (COP) and self-efficacy in managing negative affect (NEG) as mediators and lockdown duration, hours on pandemic-related information, and number of pregnancies as moderators. Pregnant women in Shanghai completed the Regulatory Emotional Self-Efficacy Scale, COVID-19 Coping Scale, Depression, Anxiety, and Stress Scale-21. Structural equation modeling (SEM) was used to test and modify the hypothetical model, and moderated mediation and slope analyses were undertaken.
Results:
In the final SEM demonstrating satisfactory fit, three stressors—decreased household income, insufficient daily supplies, and acquired infections—showed positive direct relationships with NEG and COP. Acquired infections, NEG, and COP were identified as direct predictors of mental health outcomes. The relationship between these three stressors and mental health was mediated by NEG and COP. Additionally, the number of pregnancies moderated the mediating effect of COP; this effect was more pronounced among first-time pregnant women than those with multiple pregnancies.
Conclusion
This study provides insights into how lockdown measures impact psychological outcomes in pregnant women quarantined at home. Interventions aimed at increasing coping strategies may be more effective for primiparous women during future public health emergencies.
2.Effect of Guiqi Yiyuan Ointment on Lewis Lung Cancer Mice by Increasing Autophagic Flux and Stabilizing PD-L1 Expression Through Regulation of ERK Signaling Pathway
Nan YANG ; Qiangping MA ; Jianqing LIANG ; Kejun MIAO ; Shang LI ; Jintian LI ; Juan LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):107-114
ObjectiveTo investigate the antitumor effect and mechanism of Guiqi Yiyuan ointment on Lewis lung cancer mice based on the extracellular regulatory protein kinase (ERK) signaling pathway. MethodsA Lewis lung cancer mouse model was established. Except for the blank group, the model mice were randomly divided into the model group, Guiqi Yiyuan ointment low, medium, and high dose groups, and the extracellular ERK1/2 inhibitor group, with 10 mice per group. The Guiqi Yiyuan ointment was administered by gavage at doses of 1.75, 3.5, 7.0 g·kg-1·d-1 for the low, medium, and high dose groups, respectively. The ERK1/2 inhibitor group was given the ERK1/2 inhibitor LY3214996 (100 mg·kg-1·d-1) by gavage. The treatment was administered for 14 consecutive days, after which samples were collected. Tumor histopathological changes were observed using hematoxylin-eosin (HE) staining. Transmission electron microscopy was used to observe ultrastructural changes in tumor cells. Immunofluorescence was performed to measure the phosphorylation of ERK1/2 (p-ERK1/2) and the expression of programmed cell death ligand-1 (PD-L1) in tumor tissues. Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were used to detect the expression of p-ERK1/2, PD-L1, the autophagy marker Beclin-1, the autophagic protein p62, and the microtubule-associated protein light chains LC3Ⅰ and LC3Ⅱ at both the protein and gene levels. ResultsCompared with the model group, the average tumor weight was significantly reduced in the low and medium dose groups of Guiqi Yiyuan ointment (P<0.05), and markedly reduced in the high dose and inhibitor groups (P<0.01). Tumor cells in all treatment groups became progressively irregular, with ruptured nuclei and expanded areas of cell disintegration and necrosis. The number of organellar ablations in tumor tissues increased, and the number of autophagic vesicles also increased in all groups. The mean fluorescence intensity of p-ERK1/2 and PD-L1 was reduced in the low and medium dose groups of Guiqi Yiyuan ointment (P<0.05), and significantly reduced in the high dose and inhibitor groups (P<0.01). The mRNA expression of ERK1/2, PD-L1, Beclin-1, and p62 was reduced in the medium dose group (P<0.05), while LC3Ⅰ/Ⅱ mRNA expression was elevated (P<0.05). In the high dose and inhibitor groups, mRNA expression of ERK1/2, PD-L1, Beclin-1, and p62 was significantly reduced (P<0.01), while LC3Ⅰ/Ⅱ mRNA expression was significantly increased (P<0.01). Protein expression of p-ERK1/2, PD-L1, Beclin-1, and p62 was reduced in the medium dose group (P<0.05), and LC3Ⅰ/Ⅱ protein expression was elevated (P<0.05). In the high dose and inhibitor groups, protein expression of p-ERK1/2, PD-L1, Beclin-1, and p62 was significantly reduced (P<0.01), while LC3Ⅰ/Ⅱ protein expression was significantly elevated (P<0.01). ConclusionGuiqi Yiyuan ointment may inhibit the activation of the ERK signaling pathway, downregulate the expression of p-ERK1/2, promote autophagic flux in tumor cells, and regulate the expression of PD-L1, thereby exerting an inhibitory effect on tumor growth in Lewis lung cancer mice.
3.Inner Ear Delivery of Polyamino Acid Nanohydrogels Loaded with Dexamethasone
Pingping AI ; Lidong ZHAO ; Zhaohui TANG ; Chaoliang HE ; Xuesi CHEN ; Shiming YANG ; Nan WU
Medical Journal of Peking Union Medical College Hospital 2025;16(2):370-378
To develop a novel polyamino acid-based nanohydrogel drug delivery system for dexamethasone to enhance its delivery efficiency to the inner ear. A fluorescein-labeled polyglutamic acid-based polyamino acid dexamethasone nanohydrogel was synthesized, and its gelation time was measured. The hydrogel was surgically injected into the round window niche of guinea pigs to determine its degradation time in the middle ear cavity in vivo. The safety, pharmacokinetics, and distribution patterns of dexamethasone in the inner ear were evaluated. The hydrogel exhibited a gelation time of 80 seconds in a 37℃ water bath. In vivo, the hydrogel was almost completely degraded within 7 days in the middle ear cavity of guinea pigs. Transient hearing loss was observed one day after administration, but hearing gradually returned to normal over time. No significant cytotoxicity, vestibular stimulation signs, or pathological abnormalities in spiral ganglion cells were observed. Histopathological examination revealed no significant inflammatory reactions. Pharmacokinetic analysis demonstrated sustained drug release and prolonged dexamethasone activity. Immunofluorescence staining confirmed the distribution of dexamethasone in both the cochlea and vestibular organs. The polyamino acid nanohydrogel exhibits excellent injectability and biodegradability, representing a safe and effective drug delivery system for the inner ear.
4.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
5.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
6.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
7.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
8.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
9.Molecular Mechanism of Treating Different Diseases with Same Treatment of Gypenoside L Affecting Oxidative Damage HUVEC and OVCAR-3 Through EGFR/STAT3/Glycolytic Pathway
Ying YANG ; Jiao ZHAO ; Xiaofei SUN ; Jiaxin WANG ; Peng CUI ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):125-134
ObjectiveWith the epidermal growth factor receptor(EGFR)/Signal Transducers and Activators of Transcription(STAT3)/Hexokinase 2(HK2) signaling pathway in atherosclerosis (AS) and ovarian cancer (OC) as the entry point, this paper discusses the molecular mechanism of Gypenoside L (Gyp-L) treating AS and OC with different diseases, provides a new perspective and theoretical basis for TCM treating AS and OC with EGFR-STAT3-HK2 pathway, and enriches the scientific connotation of the theory of "cytoskeleton in the heart". MethodsCCK-8 was used to detect the proliferation of HUVEC and OVCAR-3 cells, in order to determine the intervention concentration for subsequent experiments. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. Western blot was used to detect the expression levels of relevant proteins. Furthermore, two cell models overexpressing EGFR were constructed and co treated with Gyp-L. HUVEC cells were divided into control, ox-LDL, OE-NC, OE-EGFR, OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. OVCAR-3 cells were divided into control, OE-NC, OE-EGFR , OE-NC+Gyp-L, and OE-EGFR+Gyp-L group. The colorimetric method was used to detect the NO content in HUVEC and the contents of pyruvate and LDH in two cell lines. Western blot was used to detect the expression levels of EGFR-STAT3-HK2 pathway related proteins. Cell cloning experiments and scratch experiments reflect the proliferation and migration ability of OVCAR-3 cells. ResultsGyp-L can significantly reduce the NO content of HUVEC and the pyruvate and LDH content of two cell lines (P<0.05); Inhibit the proliferation and migration ability of OVCAR-3 cells; Reduce the expression levels of EGFR/STAT3/HK2 pathway related proteins in HUVEC and OVCAR-3 cell lines (P<0.05), and inhibit the glycolysis pathway. ConclusionGyp-L can inhibit glycolysis in HUVEC and OVCAR-3 cells through the EGFR/STAT3/HK2 pathway,thereby suppressing the occurrence and development of AS and OC.
10.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in

Result Analysis
Print
Save
E-mail