1.Genomic Approach to the Assessment of Adverse Effects of Particulate Matters on Skin Cancer and Other Disorders and Underlying Molecular Mechanisms
Nam Gook KEE ; Hyun Soo KIM ; Hyunjung CHOI ; Hyoung-June KIM ; Young Rok SEO
Journal of Cancer Prevention 2021;26(3):153-161
Air pollutants are in the spotlight because the human body can easily be exposed to them. Among air pollutants, the particulate matter (PM) represents one of the most serious toxicants that can enter the human body through various exposure routes. PMs have various adverse effects and classified as severe carcinogen by International Agency for Research on Cancer. Their physical and chemical characteristics are distinguished by their size. In this review, we summarized the published information on the physicochemical characteristics and adverse effects of PMs on the skin, including carcinogenicity. Through comparisons of biological networks constructed from relationships discussed in the previous scientific publications, we show it is possible to predict skin cancers and other disorders from particle-size-specific signaling alterations of PM-responsive genes. Our review not only helps to grasp the biological association between ambient PMs and skin diseases including cancer, but also provides new approaches to interpret chemical-gene-disease associations regarding the adverse effects of these heterogeneous particles.
2.Genomic Approach to the Assessment of Adverse Effects of Particulate Matters on Skin Cancer and Other Disorders and Underlying Molecular Mechanisms
Nam Gook KEE ; Hyun Soo KIM ; Hyunjung CHOI ; Hyoung-June KIM ; Young Rok SEO
Journal of Cancer Prevention 2021;26(3):153-161
Air pollutants are in the spotlight because the human body can easily be exposed to them. Among air pollutants, the particulate matter (PM) represents one of the most serious toxicants that can enter the human body through various exposure routes. PMs have various adverse effects and classified as severe carcinogen by International Agency for Research on Cancer. Their physical and chemical characteristics are distinguished by their size. In this review, we summarized the published information on the physicochemical characteristics and adverse effects of PMs on the skin, including carcinogenicity. Through comparisons of biological networks constructed from relationships discussed in the previous scientific publications, we show it is possible to predict skin cancers and other disorders from particle-size-specific signaling alterations of PM-responsive genes. Our review not only helps to grasp the biological association between ambient PMs and skin diseases including cancer, but also provides new approaches to interpret chemical-gene-disease associations regarding the adverse effects of these heterogeneous particles.
3.Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.
Duk Joong KIM ; Chang Ki CHOI ; Chan Soo LEE ; Mee Hee PARK ; Xizhe TIAN ; Nam Doo KIM ; Kee In LEE ; Joong Kwon CHOI ; Jin Hee AHN ; Eun Young SHIN ; Injae SHIN ; Eung Gook KIM
Experimental & Molecular Medicine 2016;48(4):e229-
p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors.
Actins
;
Cell Proliferation
;
Cell Survival
;
Humans
;
In Vitro Techniques
;
Mass Screening
;
Nervous System Diseases
;
p21-Activated Kinases
;
Phosphotransferases*
;
rho GTP-Binding Proteins
4.Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain.
Duk Joong KIM ; Chang Ki CHOI ; Chan Soo LEE ; Mee Hee PARK ; Xizhe TIAN ; Nam Doo KIM ; Kee In LEE ; Joong Kwon CHOI ; Jin Hee AHN ; Eun Young SHIN ; Injae SHIN ; Eung Gook KIM
Experimental & Molecular Medicine 2016;48(4):e229-
p21-activated kinases (PAKs) are key regulators of actin dynamics, cell proliferation and cell survival. Deregulation of PAK activity contributes to the pathogenesis of various human diseases, including cancer and neurological disorders. Using an ELISA-based screening protocol, we identified naphtho(hydro)quinone-based small molecules that allosterically inhibit PAK activity. These molecules interfere with the interactions between the p21-binding domain (PBD) of PAK1 and Rho GTPases by binding to the PBD. Importantly, they inhibit the activity of full-length PAKs and are selective for PAK1 and PAK3 in vitro and in living cells. These compounds may potentially be useful for determining the details of the PAK signaling pathway and may also be used as lead molecules in the development of more selective and potent PAK inhibitors.
Actins
;
Cell Proliferation
;
Cell Survival
;
Humans
;
In Vitro Techniques
;
Mass Screening
;
Nervous System Diseases
;
p21-Activated Kinases
;
Phosphotransferases*
;
rho GTP-Binding Proteins