1.Adverse health effects of climate change and air pollution in people with disabilities: a systematic review
Nakyung RHIM ; Seohyun LEE ; Kyung-Hwa CHOI
Epidemiology and Health 2024;46(1):e2024080-
Global warming and air pollution adversely affect the health of the entire human population, particularly older adults, people with disabilities (PWDs), and children. In this systematic review, we investigated the adverse health effects of climate change and air pollution in PWDs. We conducted a comprehensive literature search of the PubMed database using the terms “disab*,” “air pollution,” and “climate change” on July 4, 2023, and August 8, 2023 and searched the Web of Science (WOS) database on December 28, 2023. We identified 425 and 1,169 studies on climate change cited in PubMed and WOS, respectively, as well as 333 studies on air pollution in PubMed and 495 studies on air pollution in WOS. The studies were classified by type of exposure, and full-text screening was conducted to confirm that the population, intervention or exposure, comparator, outcome statement, and inclusion and exclusion criteria were met. The Newcastle-Ottawa Scale was used to assess the quality of the included cohort and case-control studies and for data analysis. In extreme temperatures, PWDs experienced higher rates of injury, heat-related illness, functional impairment, heart disease, mental disorders, and mortality than people who were non-disabled (ND). Exposure to air pollution resulted in higher rates of obesity, cardiovascular disease, poststroke neurological and functional disability, and mortality in PWDs than in people who were ND. Therefore, because PWDs were more affected by climate change and air pollution than people who were ND, sensitive policies and preparedness measures should be developed for PWDs.
2.Adverse health effects of climate change and air pollution in people with disabilities: a systematic review
Nakyung RHIM ; Seohyun LEE ; Kyung-Hwa CHOI
Epidemiology and Health 2024;46(1):e2024080-
Global warming and air pollution adversely affect the health of the entire human population, particularly older adults, people with disabilities (PWDs), and children. In this systematic review, we investigated the adverse health effects of climate change and air pollution in PWDs. We conducted a comprehensive literature search of the PubMed database using the terms “disab*,” “air pollution,” and “climate change” on July 4, 2023, and August 8, 2023 and searched the Web of Science (WOS) database on December 28, 2023. We identified 425 and 1,169 studies on climate change cited in PubMed and WOS, respectively, as well as 333 studies on air pollution in PubMed and 495 studies on air pollution in WOS. The studies were classified by type of exposure, and full-text screening was conducted to confirm that the population, intervention or exposure, comparator, outcome statement, and inclusion and exclusion criteria were met. The Newcastle-Ottawa Scale was used to assess the quality of the included cohort and case-control studies and for data analysis. In extreme temperatures, PWDs experienced higher rates of injury, heat-related illness, functional impairment, heart disease, mental disorders, and mortality than people who were non-disabled (ND). Exposure to air pollution resulted in higher rates of obesity, cardiovascular disease, poststroke neurological and functional disability, and mortality in PWDs than in people who were ND. Therefore, because PWDs were more affected by climate change and air pollution than people who were ND, sensitive policies and preparedness measures should be developed for PWDs.
3.Adverse health effects of climate change and air pollution in people with disabilities: a systematic review
Nakyung RHIM ; Seohyun LEE ; Kyung-Hwa CHOI
Epidemiology and Health 2024;46(1):e2024080-
Global warming and air pollution adversely affect the health of the entire human population, particularly older adults, people with disabilities (PWDs), and children. In this systematic review, we investigated the adverse health effects of climate change and air pollution in PWDs. We conducted a comprehensive literature search of the PubMed database using the terms “disab*,” “air pollution,” and “climate change” on July 4, 2023, and August 8, 2023 and searched the Web of Science (WOS) database on December 28, 2023. We identified 425 and 1,169 studies on climate change cited in PubMed and WOS, respectively, as well as 333 studies on air pollution in PubMed and 495 studies on air pollution in WOS. The studies were classified by type of exposure, and full-text screening was conducted to confirm that the population, intervention or exposure, comparator, outcome statement, and inclusion and exclusion criteria were met. The Newcastle-Ottawa Scale was used to assess the quality of the included cohort and case-control studies and for data analysis. In extreme temperatures, PWDs experienced higher rates of injury, heat-related illness, functional impairment, heart disease, mental disorders, and mortality than people who were non-disabled (ND). Exposure to air pollution resulted in higher rates of obesity, cardiovascular disease, poststroke neurological and functional disability, and mortality in PWDs than in people who were ND. Therefore, because PWDs were more affected by climate change and air pollution than people who were ND, sensitive policies and preparedness measures should be developed for PWDs.
4.Adverse health effects of climate change and air pollution in people with disabilities: a systematic review
Nakyung RHIM ; Seohyun LEE ; Kyung-Hwa CHOI
Epidemiology and Health 2024;46(1):e2024080-
Global warming and air pollution adversely affect the health of the entire human population, particularly older adults, people with disabilities (PWDs), and children. In this systematic review, we investigated the adverse health effects of climate change and air pollution in PWDs. We conducted a comprehensive literature search of the PubMed database using the terms “disab*,” “air pollution,” and “climate change” on July 4, 2023, and August 8, 2023 and searched the Web of Science (WOS) database on December 28, 2023. We identified 425 and 1,169 studies on climate change cited in PubMed and WOS, respectively, as well as 333 studies on air pollution in PubMed and 495 studies on air pollution in WOS. The studies were classified by type of exposure, and full-text screening was conducted to confirm that the population, intervention or exposure, comparator, outcome statement, and inclusion and exclusion criteria were met. The Newcastle-Ottawa Scale was used to assess the quality of the included cohort and case-control studies and for data analysis. In extreme temperatures, PWDs experienced higher rates of injury, heat-related illness, functional impairment, heart disease, mental disorders, and mortality than people who were non-disabled (ND). Exposure to air pollution resulted in higher rates of obesity, cardiovascular disease, poststroke neurological and functional disability, and mortality in PWDs than in people who were ND. Therefore, because PWDs were more affected by climate change and air pollution than people who were ND, sensitive policies and preparedness measures should be developed for PWDs.
5.Comparison of Antibody and T Cell Responses Induced by Single Doses of ChAdOx1 nCoV-19 and BNT162b2Vaccines
Ji Yeun KIM ; Seongman BAE ; Soonju PARK ; Ji-Soo KWON ; So Yun LIM ; Ji Young PARK ; Hye Hee CHA ; Mi Hyun SEO ; Hyun Jung LEE ; Nakyung LEE ; Jinyeong HEO ; David SHUM ; Youngmee JEE ; Sung-Han KIM
Immune Network 2021;21(4):e29-
There are limited data directly comparing humoral and T cell responses to the ChAdOx1 nCoV-19 and BNT162b2 vaccines. We compared Ab and T cell responses after first doses of ChAdOx1 nCoV-19 vs. BNT162b2 vaccines. We enrolled healthcare workers who received ChAdOx1 nCoV-19 or BNT162b2 vaccine in Seoul, Korea. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S1 protein-specific IgG Abs (S1-IgG), neutralizing Abs (NT Abs), and SARS-CoV-2-specific T cell response were evaluated before vaccination and at 1-wk intervals for 3 wks after vaccination. A total of 76 persons, comprising 40 injected with the ChAdOx1 vaccine and 36 injected with the BNT162b2 vaccine, participated in this study. At 3 wks after vaccination, the mean levels (±SD) of S1-IgG and NT Abs in the BNT162b2 participants were significantly higher than in the ChAdOx1 participants (S1-IgG, 14.03±7.20 vs. 6.28±8.87, p<0.0001; NT Ab, 183.1±155.6 vs. 116.6±116.2, p=0.035), respectively. However, the mean values of the T cell responses in the 2 groups were comparable after 2 wks. The humoral immune response after the 1st dose of BNT162b2 developed faster and was stronger than after the 1st dose of ChAdOx1. However, the T cell responses to BNT162b2 and ChAdOx1 were similar.
6.Correlation between Reactogenicity and Immunogenicity after the ChAdOx1 nCoV-19 and BNT162b2 mRNA Vaccination
So Yun LIM ; Ji Yeun KIM ; Soonju PARK ; Ji-Soo KWON ; Ji Young PARK ; Hye Hee CHA ; Mi Hyun SUH ; Hyun Jung LEE ; Joon Seo LIM ; Seongman BAE ; Jiwon JUNG ; Nakyung LEE ; Kideok KIM ; David SHUM ; Youngmee JEE ; Sung-Han KIM
Immune Network 2021;21(6):e41-
Correlation between vaccine reactogenicity and immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Thus, we investigated to determine whether the reactogenicity after coronavirus disease 2019 vaccination is associated with antibody (Ab) titers and T cell responses. This study was prospective cohort study done with 131 healthcare workers at tertiary center in Seoul, South Korea. The degrees of the local reactions after the 1st and 2nd doses of ChAdOx1 nCov-19 (ChAdOx1) vaccination were significantly associated with the S1-specific IgG Ab titers (p=0.003 and 0.01, respectively) and neutralizing Ab (p=0.04 and 0.10, respectively) in age- and sex-adjusted multivariate analysis, whereas those after the BNT162b2 vaccination did not show significant associations. T cell responses did not show significant associations with the degree of reactogenicity after the ChAdOx1 vaccination or the BNT162b2 vaccination. Thus, high degree of local reactogenicity after the ChAdOx1 vaccine may be used as an indicator of strong humoral immune responses against SARS-CoV-2.