1. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.
2.Advances in pharmacological effects of ginseng,acorus calamus and its couplet medicine on Alzheimer's disease
Yu-Chen ZHU ; Bo-Yu KUANG ; Jin-Ping LIANG ; Xiao-Lei PEI ; Jia-Zhu ZHAO ; Shi-Feng CHU ; Nai-Hong CHEN ; Yan-Tao YANG
Chinese Pharmacological Bulletin 2024;40(5):817-822
The pathogenesis of Alzheimer's disease(AD)is complex and unclear.Existing drugs can only alleviate its symp-toms,and there is an urgent need to develop effective therapeutic drugs.As the representative drugs of tonic and enlightening medicine,ginseng and acorus calamus have pharmacological effects to improve memory,improve learning ability and reduce cognitive impairment,which are commonly used in Chinese med-icine for the treatment of dementia.The combination of ginseng and acorus calamus can further promote the active ingredients in-to brain to exert their medicinal effects,and delay the process of AD through anti-inflammatory,anti-oxidative stress,modulation of neuronal-synaptic plasticity and other multiple pathways,with multi-level,multi-system and multi-target action characteristics.This paper attempts to summarize the existing research results and lay the foundation for further exploring the synergistic mech-anism of action of ginseng-acorus calamus combination and the dose-effect relationship of the combination,so as to provide a sci-entific basis for the development of innovative Chinese medicines for the prevention and treatment of AD.
3.Interaction between neuron-glial cell gap junction and neural circuit
Hong-Bin WANG ; Jiao YAO ; Hui-Qin WANG ; Zhi-Feng TIAN ; Qi-Di AI ; Mei-Yu LIN ; Yan-Tao YANG ; Song-Wei YANG ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(7):1210-1214
Gap junction(GJ),also known as gap junction,is widely found between neurons and glial cells,and can connect neighboring cells and mediate the transmission of electrical sig-nals between neighboring cells.The GJ channel,which exists between neurons and mediates intercellular electrical signaling,is also known as an electrical synapse.Connexins(Cxs)are the molecular basis of GJ,and are expressed to different degrees in different neurons and glial cells.The presence of GJ mediates different functions among neurons and glial cells,which further influences the establishment of various mature neural circuits,re-flecting the importance of GJ in the maintenance of neural cir-cuits.This review summarizes the relationship between GJ and neural circuits in relation to the effects of GJ and different Cxs on neurons and glial cells,providing new research ideas for the treatment of neuropsychiatric disorders.
4.Advances in exosomes and Alzheimer's disease
Jin-Ping LIANG ; Yu-Chen ZHU ; Sha-Sha LIU ; Yang SUN ; Bo-Yu KUANG ; Shi-Feng CHU ; Nai-Hong CHEN ; Qi-Di AI ; Yan-Tao YANG
Chinese Pharmacological Bulletin 2024;40(9):1628-1633
Exosomes represent a class of nanoscale extracellular vesicles that facilitate the exchange of genetic information among various cells.Alzheimer's disease(AD)stands as a progressive neurodegenerative disorder characterized by its subtle and advan-cing onset,representing the foremost form of dementia lacking effective therapeutic interventions.Notably,investigations have illuminated the involvement of exosomes in the pathogenesis of AD,attributing diagnostic and therapeutic significance to their role,particularly concerning exosomal microRNAs(miRNA).The miRNAs carried by exosomes serve as potential biomarkers for AD,while also exhibiting potential benefits in ameliorating cognitive dysfunction in individuals afflicted by AD.This article aims to comprehensively review the origins of exosomes(encom-passing both mesenchymal cell-derived exosomes and brain-de-rived exosomes)and their potential as therapeutic agents targe-ting AD.
5.Progress on mechanism of action and neuroprotective effects of notoginsenoside R1
Han-Long WANG ; Yang SUN ; Sha-Sha LIU ; Jun-Peng LONG ; Qian YAN ; Yu-Ting LIN ; Jin-Ping LIANG ; Shi-Feng CHU ; Yan-Tao YANG ; Qi-Di AI ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(11):2020-2025
Panax notoginseng is the dried root and rhizome of Panax notoginseng(Burk.)F.H.Chen,a perennial erect herb of the genus Ginseng of the family Wujiaceae.As a traditional Chinese medicine in our country,Panax notoginseng has a good tonic effect,and the Dictionary of Traditional Chinese Medicines has the words that Panax notoginseng is used to tonify the blood,remove the blood stasis and damage,and stop epistaxis.It can also be used to pass the blood and tonify the blood with the best efficacy,and it is the most precious one of the prescription med-icines.Eaten raw,it removes blood stasis and generates new blood,subdues swelling and stabilizes pain,stops bleeding with-out leaving stasis,and promotes blood circulation without hurting the new blood;taken cooked,it can be used to replenish and strengthen the body.Notoginsenoside R1 is a characteristic com-pound in the total saponin of Panax ginseng.In recent years,China's aging has been increasing,and the incidence of neuro-logical disorders has been increasing year by year.Meanwhile,reports on notoginsenoside R1 in the treatment of neurological disorders are increasing,and its neuroprotective effects have been exerted with precise efficacy.The purpose of this paper is to review the treatment of neurological diseases and the mecha-nism of action of notoginsenoside R1,so as to provide a certain theoretical basis for clinical use and new drug development.
6.Screen exposure status and related factors in children with epilepsy
Shu-Jing WANG ; Yan LI ; Meng-Zhu HU ; Ying-Hong ZHU ; Nai-Xue CUI
Chinese Journal of Contemporary Pediatrics 2024;26(11):1202-1210
Objective To understand the status of screen exposure in children with epilepsy and analyze the influencing factors for screen exposure time,providing a scientific basis for managing screen exposure in these children. Methods A convenience sampling method was used to select 275 children with epilepsy from outpatient clinics or those undergoing 24-hour electroencephalogram monitoring at two tertiary hospitals in Jinan from March to June 2023. Their parents (fathers or mothers) completed a questionnaire to collect data on screen exposure,parental screen regulation behaviors,and related information about the children and their families. The Wilcoxon rank-sum test or the Kruskal-Wallis H test was used to conduct a univariate analysis of the average screen exposure time of children on school days and weekends,as well as the daily average screen exposure time. A multivariate logistic regression analysis was used to identify the risk factors for children whose screen exposure time exceeded the recommended guidelines (average screen exposure time on school days>1 hour or average on weekends>2 hours). Results The median screen exposure duration on school days was 40 minutes,while on weekends it was 120 minutes. Among the children studied,23.1% (63/273) had average screen exposure time exceeding 1 hour on school days,and 42.5% (117/275) had average screen exposure time exceeding 2 hours on weekends. Four children experienced seizures while using screen devices. Multivariate logistic regression analysis indicated that using screen devices shortly before sleep,lower educational levels of parents,caregivers discussing screen content with children,and longer seizure durations in children were risk factors for exceeding recommended guidelines (P<0.05). Conclusions Some children with epilepsy have a screen exposure time exceeding the recommended guidelines. A longer seizure duration,lower parental education levels,and permissive digital parenting are closely associated with children's screen exposure time exceeding the recommended guidelines. Families and children exhibiting these characteristics should be prioritized for attention and health education.
7.Progress on the neuroprotective effects of ginsenoside Rg1
Jun-peng LONG ; Yang SUN ; Sha-sha LIU ; Jiao YAO ; Song-wei YANG ; Yan-tao YANG ; Gang PEI ; Lei MENG ; Qi-di AI ; Nai-hong CHEN
Acta Pharmaceutica Sinica 2023;58(1):21-26
Ginsenoside Rg1 is one of the most important saponins in ginseng. It has a wide range of pharmacological activities. It is considered to be a powerful neuroprotective agent. It has neuroprotective effects such as anti-neuroinflammation, anti-oxidative stress, anti-neuronal apoptosis, and enhancing memory. Rg1 shows a good application prospect in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, stroke, and mental diseases such as depression. This paper reviews the research on the neuroprotective mechanism of Rg1 at home and abroad in recent years, in order to provide new research ideas for the clinical treatment of nervous system diseases.
8.The screening model for dopamine receptor agonists by a dopamine sensor
Yan-yan LI ; Xiao-tong WANG ; Qi-wen HAN ; Nai-hong CHEN ; Yu-he YUAN
Acta Pharmaceutica Sinica 2023;58(3):679-687
Parkinson's disease (PD) is a degenerative disease of the central nervous system due to the loss or death of dopaminergic neurons in the substantia nigra. Clinically, levodopa is the most effective and commonly used drug for PD treatment. However, long-term levodopa therapy is prone to motor complications and other side effects caused by excessive peripheral dopamine production, which has become an urgent problem to be solved in PD treatment. Dopamine receptor (DR) agonists are similar to dopamine. They can directly stimulate postsynaptic dopamine receptors, produce the same effect as dopamine, delay the application of levodopa as much as possible, and reduce complications caused by long-term use of levodopa. Therefore, screening effective dopamine receptor agonists has become a key issue in the study and treatment of PD. In order to establish a rapid, stable and reliable method for dopamine receptor agonist screening, this study used the human dopamine receptor 2 (DRD2) gene fused with a circular permuted EGFP (cpEGFP) to construct a recombinant gene, packaged with lentiviral vector, and the vector replaced the parted inner transmembrane domain of the third intracellular loop (ICL3) of genetically-encoded GPCR-activation based (GRAB) sensors. The fluorescence of GPCR-fused cpEGFP is regulated by conformational changes mediated by the interaction of dopamine receptor agonists with GPCRs without altering GPCR activity. The HEK293T cells were infected with viral vector, screened by puromycin to select highly expressed cells. Dopamine receptor agonists (including dopamine, bromocriptine mesylate, cabergoline, pramipexole) were used as positive drugs to explore the best screening and detection conditions, establishing a stable model to evaluate the dopamine receptor agonist. The results showed that the optimal filter for the dopamine receptor agonist in this study was the cell seeding count of 7×104, and the effective concentration of the positive drug was 1-100 µmol·L-1. In addition, pretreated with 10 µmol·L-1 dopamine receptor antagonists (including chlorprothixol hydrochloride, domperidone, and sulpiride), the positive fluorescence signal of overexpressed DRD2-cpEGFP HEK293T cells could not be detected when exposed to 10 µmol·L-1 dopamine receptor agonists, which proved that dopamine receptor antagonists could block the activity of dopamine receptor agonists, so they cannot activate dopamine receptor allosteric, indicating that the model has good specificity and can also be used for the screening and detection of new dopamine receptor antagonists. In summary, the study constructs a stable dopamine sensor detection system, which can effectively screen potential dopamine receptor agonists. The operation procedures are simple and rapid. And it can be used for a large-scale screening providing a fundamental methodology for drug development and PD treatment targeted on DRD2.
9.Danhong Injection Up-regulates miR-125b in Endothelial Exosomes and Attenuates Apoptosis in Post-Infarction Myocardium.
Si-Nai LI ; Zi-Hao LIU ; Ming-Xue ZHOU ; Wei-Hong LIU ; Xiao-Lei LAI ; Ping LI ; Lei ZHANG ; Ju-Ju SHANG ; Sheng-Lei QIU ; Yan LOU ; Yu-Pei TAN ; Wen-Long XING ; Hong-Xu LIU
Chinese journal of integrative medicine 2023;29(12):1099-1110
OBJECTIVE:
To investigate the involvement of endothelial cells (ECs)-derived exosomes in the anti-apoptotic effect of Danhong Injection (DHI) and the mechanism of DHI-induced exosomal protection against postinfarction myocardial apoptosis.
METHODS:
A mouse permanent myocardial infarction (MI) model was established, followed by a 14-day daily treatment with DHI, DHI plus GW4869 (an exosomal inhibitor), or saline. Phosphate-buffered saline (PBS)-induced ECs-derived exosomes were isolated, analyzed by miRNA microarray and validated by droplet digital polymerase chain reaction (ddPCR). The exosomes induced by DHI (DHI-exo), PBS (PBS-exo), or DHI+GW4869 (GW-exo) were isolated and injected into the peri-infarct zone following MI. The protective effects of DHI and DHI-exo on MI hearts were measured by echocardiography, Masson's trichrome staining, and TUNEL apoptosis assay. The Western blotting and quantitative reverse transcription PCR (qRT-PCR) were used to evaluate the expression levels of miR-125b/p53-mediated pathway components, including miR-125b, p53, Bak, Bax, and caspase-3 activities.
RESULTS:
DHI significantly improved cardiac function and reduced infarct size in MI mice (P<0.01), which was abolished by the GW4869 intervention. DHI promoted the exosomal secretion in ECs (P<0.01). According to the results of exosomal miRNA microarray assay, 30 differentially expressed miRNAs in the DHI-exo were identified (28 up-regulated miRNAs and 2 down-regulated miRNAs). Among them, DHI significantly elevated miR-125b level in DHI-exo and DHI-treated ECs, a recognized apoptotic inhibitor impeding p53 signaling (P<0.05). Remarkably, treatment with DHI and DHI-exo attenuated apoptosis, elevated miR-125b expression level, inhibited capsase-3 activity, and down-regulated the expression levels of proapoptotic effectors (p53, Bak, and Bax) in post-MI hearts, whereas these effects were blocked by GW4869 (P<0.05 or P<0.01).
CONCLUSION
DHI and DHI-induced exosomes inhibited apoptosis, promoted the miR-125b expression level, and regulated the p53 apoptotic pathway in post-infarction myocardium.
Mice
;
Animals
;
Tumor Suppressor Protein p53/metabolism*
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Myocardium/metabolism*
;
Myocardial Infarction/drug therapy*
;
Apoptosis
;
MicroRNAs/metabolism*
10. Ginsenoside Rgl inhibits neuronal ferroptosis caused by ischemic stroke through activating of Nrf2/xCT/GPX4 axis
Kai-Chao HU ; Jia-Qi HE ; Shi-Feng CHU ; Zhao ZHANG ; Nai-Hong CHEN ; Kai-Chao HU ; Yan GAO ; Jia-Qi HE ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2023;39(10):1905-1913
Aim To study the inhibitory effect of ginsenoside Rgl on neuronal ferroptosis after ischemic stroke and its mechanism. Methods A model of oxygen glucose deprivation/reoxygenation (OGD/R) was established in HT22 cells, and the effect of Rgl on the viability of HT22 cells after OGD/R injury was detected by CCK-8. The effect of Rgl on ferroptosis in HT22 cells after OGD/R injury was detected by the test of ferroptosis markers GSH/GSSG, SOD, MDA, and Fe

Result Analysis
Print
Save
E-mail