1.3D biofabrication of vascular networks for tissue regeneration: A report on recent advances
M.d. SARKER ; Saman NAGHIEH ; N.k. SHARMA ; Xiongbiao CHEN
Journal of Pharmaceutical Analysis 2018;8(5):277-296
Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue en-gineered constructs largely depends on the incorporation of a stable vascular network that eventually anastomoses with the host vasculature to support the various biological functions of embedded cells. In recent years, significant progress has been achieved with respect to extrusion, laser, micro-molding, and electrospinning-based techniques that allow the fabrication of any geometry in a layer-by-layer fashion. Moreover, decellularized matrix, self-assembled structures, and cell sheets have been explored to replace the biopolymers needed for scaffold fabrication. While the techniques have evolved to create specific tissues or organs with outstanding geometric precision, formation of interconnected, functional, and perfused vascular networks remains a challenge. This article briefly reviews recent progress in 3D fab-rication approaches used to fabricate vascular networks with incorporated cells, angiogenic factors, proteins, and/or peptides. The influence of the fabricated network on blood vessel formation, and the various features, merits, and shortcomings of the various fabrication techniques are discussed and summarized.
2.Printability-A key issue in extrusion-based bioprinting
Naghieh SAMAN ; Chen XIONGBIAO
Journal of Pharmaceutical Analysis 2021;11(5):564-579
Three-dimensional(3D)extrusion-based bioprinting is widely used in tissue engineering and regener-ative medicine to create cell-incorporated constructs or scaffolds based on the extrusion technique.One critical issue in 3D extrusion-based bioprinting is printability or the capability to form and maintain reproducible 3D scaffolds from bioink(a mixture of biomaterials and cells).Research shows that printability can be affected by many factors or parameters,including those associated with the bioink,printing process,and scaffold design,but these are far from certain.This review highlights recent de-velopments in the printability assessment of extrusion-based bioprinting with a focus on the definition of printability,printability measurements and characterization,and printability-affecting factors.Key issues and challenges related to printability are also identified and discussed,along with approaches or strategies for improving printability in extrusion-based bioprinting.