1.Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells.
Yang Jin LEE ; Chang Eun PARK ; Jong Hyun KIM ; Hae Jin SOHN ; Jinyoung LEE ; Suk Yul JUNG ; Ho Joon SHIN
The Korean Journal of Parasitology 2011;49(3):285-290
Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-alpha, IL-6, and IL-1beta, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.
Animals
;
*Cell Death
;
Chromium Radioisotopes/metabolism
;
Cytokines/*secretion
;
Humans
;
Microglia/cytology/immunology/*physiology
;
Microscopy
;
Naegleria fowleri/*pathogenicity
;
Rats
;
Staining and Labeling
2.Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri.
Seok Ryoul JEONG ; Su Yeon KANG ; Sang Chul LEE ; Kyoung Ju SONG ; Kyung il IM ; Ho Joon SHIN
The Korean Journal of Parasitology 2004;42(1):35-40
The nfa1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polyclonal antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1: 100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dosedependent manner.
Animals
;
Antibodies, Protozoan/*immunology
;
Antigens, Protozoan/genetics/*immunology
;
CHO Cells
;
Dose-Response Relationship, Immunologic
;
Female
;
Hamsters
;
Mice
;
Mice, Inbred BALB C
;
Naegleria fowleri/growth & development/immunology/*pathogenicity
;
Protozoan Proteins/genetics/*immunology
;
Recombinant Proteins/immunology
;
Support, Non-U.S. Gov't