1.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
2.Establishment and Evaluation of New Mouse Model of Rheumatoid Arthritis Combined with Interstitial Lung Disease
Liting XU ; Qingyu ZHAO ; Chao YANG ; Lianhua HE ; Congcong SUN ; Shuangrong GAO ; Lili WANG ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):81-90
ObjectiveTo establish a mouse model of rheumatoid arthritis with interstitial lung disease (RA-ILD) in DBA/1 mice using Porphyromonas gingivalis (Pg) infection combined with collagen-induced arthritis (CIA), and to comprehensively evaluate pathological characteristics in joints, lungs, and serum. MethodsForty DBA/1 mice were randomly divided into four groups, i.e., Control, Pg infection (Pg), CIA, and Pg infection combined with CIA (Pg+CIA), with 10 mice in each group. Arthritis clinical symptoms were evaluated by recording arthritis incidence and clinical scores. Micro-CT scanning was used to assess knee joint pathology. Histopathological changes and collagen deposition in knee joints and lung tissues were analyzed using hematoxylin-eosin (HE) and Masson staining. Immunohistochemistry was performed to detect protein expression of α-smooth muscle actin (α-SMA), typeⅠ collagen (ColⅠ), and fibronectin (FN) in lung tissues. Real-time quantitative polymerase chain reaction(Real-time PCR)was used to measure mRNA expression levels of α-SMA, ColⅠ, FN, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of Pg, cyclic citrullinated peptide (CCP), and immunoglobulin G (IgG). ResultsJoint lesions: The CIA and Pg+CIA groups showed 100% arthritis incidence, with evident joint redness, swelling, and deformity. The number of affected limbs was 27 and 28, and clinical scores were 68 and 70, respectively. No obvious clinical symptoms were observed in the Pg group. Histopathological and imaging analyses showed severe joint lesions in the CIA and Pg+CIA groups, with significantly increased histopathological scores, bone mineral density, bone volume fraction, trabecular thickness, and trabecular number compared to the Control group (P<0.01). No obvious joint pathology was observed in the Pg group. Lung lesions: The Pg+CIA group exhibited marked alveolar inflammation, interstitial inflammatory cell infiltration, and alveolar wall thickening, with pronounced blue staining of collagen fibers. Histopathological scores and collagen area ratios were significantly higher than those of the Control, Pg, and CIA groups (P<0.05). Lung protein and mRNA expression levels of α-SMA, ColⅠ, and FN were markedly increased, and mRNA levels of IL-6, TNF-α, and IL-1β were significantly elevated compared to the Control group (P<0.05). Serology: The Pg+CIA group showed significantly higher levels of CCP, Pg, and IgG compared with the Control, Pg, and CIA groups (P<0.05). ConclusionDBA/1 mice subjected to Pg infection combined with CIA exhibited pronounced symptoms and pathological features of RA-ILD, along with elevated serum anti-CCP antibody levels. This model represents a novel RA-ILD mouse model, providing a valuable experimental tool for investigating RA-ILD pathogenesis and developing new therapeutics, and serves as a basis for establishing anti-cyclic citrullinated peptide antibody (ACPA)-positive RA-ILD animal models.
3.Role and mechanism of myeloid cells in hepatic fibrosis
Chengjie CUI ; Zhenzhen ZHAO ; Jing CUI ; Shuxian ZANG ; Na FU
Journal of Clinical Hepatology 2026;42(1):183-189
Hepatic fibrosis is a complex dynamic process caused by multiple chronic pathogenic factors, characterized by excessive accumulation of liver extracellular matrix and abnormal liver structure and function. If anti-fibrotic treatment is not performed in time, it can progress to liver cirrhosis and even liver cancer. Hepatic fibrosis has a complex pathogenesis, and previous studies mainly focused on the activation of hepatic stellate cells. Recent studies have shown that myeloid cells have the potential of multi-directional differentiation and can also participate in the development and progression of hepatic fibrosis. This article systematically reviews the role and regulatory mechanism of myeloid cells in hepatic fibrosis, in order to provide a reference for clinical diagnosis and targeted therapy.
4.Cytotoxicity Studies of Light-oxygen-voltage (LOV) Domain Photosensitizers
Shuang XU ; Ben WAN ; Na SHA ; Kai-Hong ZHAO
Progress in Biochemistry and Biophysics 2025;52(2):487-500
ObjectiveAt present, the most commonly used photosensitizers in photodynamic therapy are still chemical photosensitizers, such as porphyrin and methylene blue, in order to specifically target cellular tissues, and thus poison cells, chemical photosensitizers need to use antibody conjugation or a transgenically encoded tag with affinity for the modified photosensitizing ligand, e.g. FlAsH, ReAsh or Halo Tag. Gene-encoded photosensitizers can directly poison cells by targeting specific cell compartments or organelles. However, currently developed gene-encoded photosensitizers have low reactive oxygen species production and low cytotoxicity, so it is necessary to continue to develop and obtain photosensitizers with higher reactive oxygen species production for the treatment of microbial infections and tumors. MethodsIn this study, we developed a photosensitizer LovPSO2 based on the light-oxygen-voltage (LOV) structural domain of phototropin-1B-like from Oryza sativa japonica. LovPSO2 was expressed in E. coli BL21(DE3) and purified to obtain protein samples, the purified protein samples were added 3 µmol/L singlet oxygen probe of SOSG and 5 µmol/L superoxide anion probe of DHE after fixed to A445=0.063±0.003, respectively, then measured every 2 min of singlet oxygen production for 10 min and every 1 min of superoxide anion production for 5 min under blue light irradiation at 445 nm, 70 µmol·m-2·s-1. ResultsThe results showed that LovPSO2 could produce a large amount of singlet oxygen under blue light irradiation at 445 nm, 70 µmol·m-2·s-1, and its singlet oxygen quantum yield was 0.61, but its superoxide anion yield was low, so in order to improve the superoxide anion yield of LovPSO2, a mutant with a relatively high superoxide anion yield was obtained by further development and design on its basis LovPRO2. The stability of proteins is crucial for research in drug development and drug delivery, among others. Temperature and light are the key factors affecting the production of reactive oxygen species (ROS) by photosensitive proteins and their stability, while the temperature in cell culture and mammals in vivo is about 37°C, and the temperature inside tumor cells is about 42-45°C. Therefore, we further analyzed the photostability of miniSOG, SOPP3, LovPSO2, and LovPRO2 and their thermostability at 37℃ and 45℃. The analysis of proteins thermostability showed that LovPSO2 and LovPRO2 had better thermostability at 37℃ and 45℃, respectively. Analysis of the photostability of the proteins showed that LovPRO2 had better photostability. In addition, to further determine the phototoxic effects of photosensitizers, LovPSO2 and LovPRO2 were expressed in E. coli BL21(DE3) and HeLa cells, respectively. The results showed that LovPSO2 and LovPRO2 had better phototoxicity to E. coli BL21(DE3) under blue light irradiation, and the cellular phototoxicity lethality was as high as 90% after 30 min of continuous light irradiation, but the phototoxicity was weaker in HeLa cells. The reason for this result may be that the intracellular environment exacerbated the photobleaching of FMN encapsulated by LovPSO2 and LovPRO2, respectively, which attenuated the damage of reactive oxygen species to animal cellular tissues, limiting its use as a mechanistic tool to study oxidative stress. ConclusionLovPSO2 and LovPRO2 can be used as antibacterial photosensitizers, which have broader application prospects in the food and medical fields.
5.Characteristic Analysis of Effective Components and Compounds of TCM for Prevention and Treatment of Breast Cancer Based on Wnt/β-catenin Signaling Pathway Targeting
Haoyang WANG ; Lin GUO ; Hui ZHAO ; Lihua CAO ; Na LI ; Mingsan MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):282-290
Breast cancer is a kind of malignant tumor with a complex mechanism, and its morbidity and mortality are increasing year by year, which seriously threatens women's health. At present, the main clinical treatments are surgical resection, radiotherapy, chemotherapy, and drug therapy, but they are often accompanied by side effects and adverse reactions, which affect the therapeutic effect. Traditional Chinese medicine (TCM) has the advantages of multi-component and multi-target treatment in the fight against breast cancer. The wnt/β-catenin signaling pathway is one of the classic pathways in cancer research. Abnormally activated Wnt/β-catenin signaling pathway inhibits β-catenin degradation by blocking the formation of Axin/glycogen synthase kinase 3β/adenomatous polyposis coli complex, thus promoting β-catenin nuclear metastasis, and it binds to T cell transcription factor/lymphoenhancer factor-1 to initiate downstream target genes and further interfere with the proliferation, migration, and invasion of tumor cells to affect the tumor process. Previous studies have shown that TCM monomers and compounds can mediate the Wnt/β-catenin signaling pathway to inhibit the malignant phenotype of breast cancer cells, thus playing an anti-breast cancer role, and the biochemical process involved in the regulation of therapeutic drugs has not been systematically combed. By analyzing and collating Chinese and foreign literature at the present stage, this paper discussed the association mechanism between Wnt/β-catenin signaling pathway and breast cancer and analyzed the internal mechanism of TCM monomers and compounds in mediating Wnt/β-catenin signaling pathway to exert anti-breast cancer effect. The statistical results showed that the flavonoids, alkaloids, and terpenoids in TCM monomers could target the Wnt/β-catenin signaling pathway and block the further development of malignant phenotype of breast cancer cells. TCM compounds with functions of clearing heat and detoxifying, promoting blood circulation and removing blood stasis, and tonifying kidney and liver were commonly used to intervene in the Wnt/β-catenin signaling pathway to prevent breast cancer. Compared with the current inhibitors of Wnt/β-catenin signaling pathway, the application of TCM monomers and compounds is expected to bring low-toxicity and high-efficiency breast cancer treatment drugs to the clinical practice, and the existing results provide a reference for the subsequent screening, research, and development of TCM small-molecule compounds and TCM compounds against breast cancer.
6.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
7.Anti-inflammatory and osteogenic effects of chitosan/sodium glycerophosphate/sodium alginate/leonurine hydrogel
Zengbo ZHAO ; Chenxi LI ; Chenlei DOU ; Na MA ; Guanjun ZHOU
Chinese Journal of Tissue Engineering Research 2025;29(4):678-685
BACKGROUND:Leonurine has many biological activities such as improving microcirculation,anti-oxidation,anti-apoptosis,scavenging free radicals,anti-inflammation,and anti-fibrosis,and can promote osteogenic differentiation of bone marrow mesenchymal stem cells,which has the potential to be applied in the treatment of periodontitis. OBJECTIVE:To explore the anti-inflammatory and osteogenic effects of leonurine loading into chitosan/sodium glycerophosphate/sodium alginate hydrogel. METHODS:(1)Chitosan/sodium glycerophosphate/sodium alginate hydrogel(blank hydrogel)and chitosan/sodium glycerophosphate/sodium alginate/leonurus alkali hydrogel were prepared respectively.RAW 264.7 and MC3T3-E1 cells were inoculated with the two kinds of hydrogel.The cytotoxicity of hydrogels was detected by CCK-8 assay and live/dead cell staining.(2)RAW 264.7 cells were cultured in five groups.The blank group was cultured for 24 hours routinely.The lipopolysaccharide group was treated with lipopolysaccharide.The simple hydrogel group was treated with lipopolysaccharide and blank hydrogel.The drug-loaded hydrogel group was treated with lipopolysaccharide and drug-loaded hydrogel.The inhibitor group was treated with lippolysaccharide,drug-loaded hydrogel,and PI3K inhibitor LY294002.24 hours later,mRNA expression of inflammation-related factors was detected by qRT-PCR.Western blot assay was utilized to detect the protein expression of inflammation-related factors and PI3K/AKT signaling pathway.(3)MC3T3-E1 cells were inoculated in four groups.The blank group was cultured without any material.The simple hydrogel group was treated with blank hydrogel.The drug-loaded hydrogel group was treated with drug-loaded hydrogel.The inhibitor group was treated with drug-loaded hydrogel and PI3K inhibitor LY294002 for 7 days.Alkaline phosphatase staining was performed.mRNA expression levels of osteogenic factors were detected by qRT-PCR.The protein expression levels of the PI3K/AKT signaling pathway were detected by western blot assay. RESULTS AND CONCLUSION:(1)The results of CCK-8 assay and live/dead cell staining showed that the two kinds of hydrogels had no cytotoxic effect and had good cytocompatibility.(2)Compared with the blank group,the mRNA and protein expression levels of interleukin 6,tumor necrosis factor α,and interleukin 1β were significantly increased(P<0.05),and the protein expression levels of p-AKT,p-PI3K,p-p65,and p-IκBα were significantly increased in the lipopolysaccharide group(P<0.05).Compared with lipopolysaccharide group,mRNA and protein expression levels of the above indexes were decreased in drug-loaded hydrogel group(P<0.05).Compared with the drug-loaded hydrogel group,the mRNA and protein expression levels of the above indexes were decreased in the inhibitor group(P<0.05).(3)The activity of alkaline phosphatase in drug-loaded hydrogel group was higher than that in the blank group,simple hydrogel group,and inhibitor group(P<0.05).Compared with blank group,the mRNA expression levels of alkaline phosphatase,Runx2,osteocalcin,and type I collagen were increased(P<0.05),and the protein expression levels of p-AKT and p-PI3K were increased in the simple hydrogel group(P<0.05).Compared with the simple hydrogel group,the mRNA and protein expression levels of the above indexes were increased in the drug-loaded hydrogel group(P<0.05).Compared with the drug-loaded hydrogel group,the mRNA and protein expression levels of the above indexes were decreased in the inhibitor group(P<0.05).(4)These findings conclude that chitosan/sodium glycerophosphate/sodium alginate/leonurine hydrogel has anti-inflammatory and osteogenic effects,which may be related to the regulation of PI3K/AKT signaling pathway.
8.The effects and mechanisms of silica on alveolar epithelial cell apoptosis
Yali LAN ; Wenyao SU ; Zhiming HU ; Ping WANG ; Bizhu ZHANG ; Na ZHAO
China Occupational Medicine 2025;52(1):10-16
Objective To investigate the effects and mechanisms of silica dust on the apoptosis of alveolar epithelial cell (AEC) through in vitro and animal experiments. Methods i) In vitro experiment. A549 cells were stimulated with 100 mg/L silica suspension for 0, 12, 24 and 48 hours. The cell apoptosis rate was detected by flow cytometry. ii) Animal experiment. Specific pathogen-free male C57BL/6 mice were randomly divided into control, 14-day, 28-day, and 56-day groups, with five mice in each group. The mice in the control group were sacrificed at 56 days after being treated with 40.0 μL 0.9% sodium chloride solution, and the mice in the last three groups were sacrificed at 14, 28 and 56 days after being treated with 40.0 μL silica suspension with a mass concentration of 125 g/L via tracheal exposure method. The lung tissues of mice were collected to measure lung organ coefficients. Masson staining was used to detect the degree of pulmonary fibrosis, and Ashcroft scores were evaluated. The apoptosis of AEC in mice was observed by TUNEL immunofluorescence assay. iii) The mRNA relative expression of apoptosis-related genes in A549 cells and mouse lung tissue was detected using reverse transcription and real-time fluorescence quantitative polymerase chain reaction. Results i) In vitro experiment. The apoptosis rate of A549 cells increased with longer silica exposure (all P<0.05). The relative expression of B cell lymphoma-2 (BCL-2) mRNA in A549 cells in 24 h group and 48 h group decreased (both P<0.05), and the relative expression of BCL-2 associated X protein (BAX) mRNA increased (both P<0.05), compared with 0 h group. The mRNA relative expression of caspase (CASP) -3 and CASP-9 in A549 cells increased with longer silica exposure (all P<0.05). ii) Animal experiment. The lung organ coefficients and Ashcroft score in mice progressively increased (all P<0.05), the degree of pulmonary fibrosis was gradually aggravated, and TUNEL positive cells in lung tissue were gradually increased, while Bax, Casp-3 and Casp-9 mRNA relative expression increased with longer silica exposure (all P<0.05). Conclusion Silica dust may cause pulmonary fibrosis by inducing apoptosis of AEC, with a time-dependent effect. The mechanism may be related to the effect of silica dust on mitochondrial apoptosis through Bcl-2/Bax/Caspase-3 signaling pathway.
9.Interpretation of "Cancer statistics, 2025": A comparative study on cancer epidemiological characteristics and long-term trends between China and the United States
Ruifeng XU ; Hongrui WANG ; Yun CHE ; Na REN ; Guochao ZHANG ; Liang ZHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):442-452
In 2025, the American Cancer Society published "Cancer statistics, 2025", which projected cancer data for the upcoming year based on incidence data collected by central cancer registries (through 2021) and mortality data obtained from the National Center for Health Statistics (through 2022). Similarly, the National Cancer Center of China released "Cancer incidence and mortality in China, 2022" in December 2024, analyzing data from 22 cancer registries across the country. This study provides a comparative analysis of cancer incidence and mortality trends in China and the United States during the same period, with a focus on sex- and age-specific distributions and long-term changes in cancer patterns. Long-term trends indicate that lung and liver cancer mortality rates in China have declined, primarily due to tobacco control measures and hepatitis B vaccination programs. However, the burden of gastric and esophageal cancers remains substantial. In the United States, mortality rates for colorectal and lung cancers have continued to decline, largely attributed to widespread screening programs and advances in immunotherapy. As economic growth and social development, China’s cancer profile is gradually shifting towards patterns observed in countries with high human development index. However, the prevention and control of upper gastrointestinal cancers remains a critical public health challenge that requires further attention.
10.Molecular mechanisms and cancer-promoting roles of sodium arsenite in regulating FNDC3B expression in A549 cells
Jinyun JIANG ; He MA ; Na LIU ; Ruihuan ZHAO ; Chenglan JIANG ; Yuefeng HE
Journal of Environmental and Occupational Medicine 2025;42(6):691-698
Background Arsenic exposure has been demonstrated to induce apoptosis. The fibronectin type III structural domain 3B protein (FNDC3B) has been shown to promote cancer cell proliferation; however, its role in arsenic-induced apoptosis remains to be elucidated. Objective To investigate the effects of sodium arsenite (NaAsO2) and its metabolites on the expression of FNDC3B gene in A549 cells and to understand the function of FNDC3B gene in A549 cells. Methods (1) A549 cells were exposed to varying final concentrations of NaAsO2 and their optical density at 450 nm values were measured by Cell Counting Kit-8 (CCK-8) after 48 h. Survival curves were plotted, and a final exposure dose was selected according to the survival rate. Total protein and RNA were extracted by exposing A549 cells to high (30 µmol·L−1), medium (20 µmol·L−1), and low (10 µmol·L−1) NaAsO2 concentrations, high (30 µmol·L−1) monomethylarsinic acid (MMA), and high (30 µmol·L−1) dimethylarsinic acid for a period of 48 h. mRNA expression and the protein expression of the FNDC3B gene was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB), while the protein ubiquitination expression of the FNDC3B gene was detected by co-immunoprecipitation (CO-IP) and WB assay. (2) Knockdown of FNDC3B gene expression was achieved in A549 cells by siRNA interference. The si-FNDC3B fragment was transfected in A549 cells for 48 h. The mRNA and protein expression of FNDC3B gene was then detected by qRT-PCR and WB assay. Cell viability was determined through CCK-8 assay. Hoechst 33342/propidium iodide (PI) double staining and JC-1 mitochondrial membrane potential assay were employed to detect both early and late apoptosis, while cleaved caspase3 protein and P53 signalling pathway related protein expressions were evaluated by WB. Results (1) The CCK-8 results demonstrated a decline in the viability of A549 cells with an increase in NaAsO2 concentration, with an inhibitory concentration at 50% of 38.12 µmol·L−1. The qRT-PCR results demonstrated that compared to the control group, varying concentrations of NaAsO₂ (10, 20, and 30 µmol·L⁻¹) significantly upregulated the mRNA expression of FNDC3B gene (P<0.01). In contrast, MMA and DMA showed no significant effect on FNDC3B mRNA expression (P>0.05). The WB analysis revealed that the protein expression of FNDC3B was reduced in the NaAsO₂-treated group compared to the control, accompanied by elevated ubiquitination levels of FNDC3B protein, particularly at the K48 ubiquitination site. MMA and DMA exhibited no impact on FNDC3B protein expression. (2) Following the specific knockdown of FNDC3B expression in A549 cells, the CCK-8 assay demonstrated a significant reduction in cell viability in the silenced FNDC3B group (si-FNDC3B) compared to the control group. The JC-1 assay demonstrated that the mitochondrial membrane potential was diminished in the si-FNDC3B group relative to the control group. The Hoechst 33342/PI staining assay revealed that the si-FNDC3B group exhibited a notable degree of apoptosis. The si-FNDC3B group also displayed substantial apoptosis. The WB analysis indicated that the relative expressions of cleaved caspase3, P53, MDM2, Bad, and Bax proteins were elevated in the si-FNDC3B group in comparison to the control group. Conclusion The presence of NaAsO2 is observed to promote the ubiquitination expression of the FNDC3B protein, which in turn reduces the expression of FNDC3B protein. However, the main metabolites DMA and MMA have no effect on the expression of FNDC3B. Furthermore, the silencing of FNDC3B is observed to inhibit the viability of A549 cells and promote apoptosis, a phenomenon related to the activation of P53 signaling pathway.

Result Analysis
Print
Save
E-mail