1.Aerobic exercise reduces the expression of pyroptosis-related proteins and inflammatory factors in hippocampus of mice with insulin resistance.
Xue-Peng BIAN ; Rui-Fang JI ; Bei-Bei LIU ; Jing-Yun HU ; Ming-Ming LI ; Xiang-Li XUE ; Shu-Jie LOU
Acta Physiologica Sinica 2020;72(4):455-462
The aim of the present study was to observe the expression of pyroptosis- and inflammation-related proteins in the hippocampus of mice with insulin resistance (IR) after aerobic exercise, and to explore the possible mechanism of exercise to improve IR. C57BL/6J male mice of 6 weeks old were randomly fed with normal diet (n = 12) and high-fat diet (HFD) (n = 26) for 12 weeks respectively. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine whether IR occurred in HFD mice. Then the mice were randomly divided into control group (n = 12), IR group (n = 10) and IR + aerobic exercise group (AE, n = 10). Mice in AE group performed a 12-week progressive speed treadmill training after being adapted to the treadmill for one week. After the intervention, the expression of pyroptosis- and inflammation-related proteins in hippocampus was detected by Western blot. The results showed that compared with control group, NFκB, Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC), pyroptosis-related proteins like pro-Caspase-1, gasdermin D (GSDMD), GSDMD-N, and inflammatory factors IL-1β, IL-18 were significantly increased. The inflammasome-related protein NIMA-related kinase 7 (NEK7) and pyroptosis-related protein Caspase-1 showed an increasing trend, but there was no significant difference. Compared with the IR group, progressive speed treadmill training significantly reduced the expression of NFκB, NLRP3, NEK7, ASC, pro-Caspase-1, GSDMD, GSDMD-N, IL-1β, and IL-18 in the hippocampus of mice with IR. These results suggested 12-week progressive speed treadmill training can significantly reduce the expression of pyroptosis-related proteins and inflammatory factors in the hippocampus of mice with IR, and inhibit pyroptosis.
Animals
;
Caspase 1
;
Gene Expression
;
Hippocampus
;
Inflammasomes
;
Insulin Resistance
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NIMA-Related Kinases
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Physical Conditioning, Animal
;
Pyroptosis
2.NEK2 promotes the progression of liver cancer by resisting the cellular senescence.
Qian LEI ; Jiliang XIA ; Xiangling FENG ; Jiaojiao GUO ; Guancheng LI ; Wen ZHOU
Journal of Central South University(Medical Sciences) 2022;47(2):153-164
OBJECTIVES:
Liver cancer is the sixth most common malignant tumor in the world. Hepatocellular carcinoma (HCC) accounts for 85%-90% of all patients with liver cancer. It possesses the characteristics of insidious onset, rapid progression, early recurrence, easy drug resistance, and poor prognosis. NIMA related kinase 2 (NEK2) is a cell cycle regulating kinases, which regulates cell cycle in mitosis. Cellular senescence is a complex heterogeneous process, and is a stable form of cell cycle arrest that limits the proliferative potential of cells. This study aims to investigate the relationship between the expression level of NEK2 and the senescence in hepatoma cells, and to explore the effect of NEK2 expression on hepatoma cell senescence and the underlying molecular mechanism.
METHODS:
A total of 581 senescence-relevant genes were obtained from the GenAge website. The gene expression data of tumor tissues of 370 HCC patients were downloaded from the Cancer Genome Atlas database. The co-expression of NEK2 and aging-related genes was analyzed by R-package. KEGG was used to analyze the significant gene enrichment pathway of differentially expressed genes in NEK2 overexpression HEK293. The stable transfected cell lines with overexpression and knockdown of NEK2 were constructed in hepatoma cell line SMMC-7721 and HepG2, and senescence-associated β-galactosidase (SA-β-gal) staining was used to detect senescence, the cell proliferation was detected by CCK-8 method and clone formation experiment, the cell cycle was analyzed by flow cytometry, and the expression of proteins related to p53/p21, p16/Rb, and phosphatase and tensin homolog deleted on chromosome ten (PTEN)/Akt signal transduction pathway was detected by Western blotting.
RESULTS:
There were 320 senescence related genes co-expressed with NEK2. KEGG analysis showed that the senescence signaling pathway was significantly enriched in HEK293 cells with overexpression of NEK2.Compared with SMMC-7721 or HepG2 without knockdown of NEK2, the senescent cells of SMMC-7721 and HepG2 with knockdown of NEK2 were increased, cell proliferation and clone formation were decreased significantly, the percentage of cells in G0/G1 phase was increased, the expression levels of phospho-Akt (p-Akt) and phospho-Rb (p-Rb) protein were decreased significantly, and the expression level of p16 protein was increased significantly (all P<0.05). Compared with SMMC-7721 or HepG2 transfected with blank plasmid, the senescent cells of SMMC-7721 and HepG2 overexpressing NEK2 were decreased, the cell proliferation and clone formation were increased significantly, the percentage of cells in G0/G1 phase were decreased, the expression levels of p-Akt and p-Rb protein were increased significantly, and the expression level of p16 protein was decreased significantly (all P<0.05).
CONCLUSIONS
NEK2 may mediate the anti-aging effect of hepatoma cells through p16/Rb and PTEN/Akt signal transduction pathways, which provides a new theoretical basis for NEK2 to promote the progress of liver cancer and a new idea for the targeting treatment for liver cancer.
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Proliferation/physiology*
;
Cellular Senescence/genetics*
;
HEK293 Cells
;
Humans
;
Liver Neoplasms/pathology*
;
NIMA-Related Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
3.Interaction between a novel centrosomal protein TACP1 and mitotic kinase Nek2A.
Yuan-yuan ZHU ; Jian-ping LAN ; Jian YU
Journal of Zhejiang University. Medical sciences 2007;36(4):337-342
OBJECTIVETo study interaction between a novel centrosomal protein TACP1 and mitotic kinase Nek2A.
METHODSNek2A305-446 protein was expressed and purified in E.coli and TACP1 protein was expressed in transfected 293T cells. Pull-down assay was used to examine the interaction between Nek2A305-446 and TACP1. TACP1 and Nek2A complex was tested by co-immunoprecipitation assay with polyclonal anti-TACP1 antibody. The localization of those two proteins in Hela cells was verified by immunofluorescence.
RESULTSTACP1 was pulled down by Nek2A305-446 protein but not by GST control. Nek2A was co-precipitated with TACP1 protein by polyclonal anti-TACP1 antibody but not by pre-immunization serum. The Immunofluorescence test showed that these two proteins formed a complex at centrosome during mitosis.
CONCLUSIONCentrosomal protein TACP1 is a novel interacting protein with Nek2A, both of which are localized in centrosome during mitosis.
Cell Line ; Centrosome ; metabolism ; Escherichia coli ; genetics ; Fluorescent Antibody Technique ; HeLa Cells ; Humans ; Immunoprecipitation ; Mitosis ; NIMA-Related Kinases ; Protein Binding ; Protein-Serine-Threonine Kinases ; genetics ; metabolism ; Recombinant Proteins ; genetics ; metabolism ; Telomere-Binding Proteins ; genetics ; metabolism ; Transfection
4.Molecular regulative mechanisms of NLRP3 inflammasome activation in diabetic nephropathy and interventional effects of Chinese herbal medicine.
Wen-Wen WANG ; Wen-Bei HAN ; Yi-Gang WAN ; Yue TU ; Bu-Hui LIU ; Ying-Lu LIU ; Wei WU ; Hong-Yun YEE ; Qi-Jun FANG ; Jian YAO
China Journal of Chinese Materia Medica 2020;45(1):7-13
The progression of renal damage in diabetic nephropathy(DN)is closely related to Nod-like receptor protein3(NLRP3)inflammasome activation. The characteristics of NLRP3 inflammasome activation include the changed expression and combination levels of NLRP3, apoptosis-associated speck-like protein(ASC)and pro-caspase-1, the increased expression levels of caspase-1, interleukin(IL)-1β and IL-18 and the excessive release levels of the relative inflammatory mediators. Its molecular regulative mechanisms involve the activation of multiple signaling pathways including reactive oxygen species(ROS)/thioredoxin-interacting protein(TXNIP)pathway, nuclear factor(NF)-κB pathway, nuclear factor erythroid-related factor 2(Nrf2)pathway, long non-coding RNA(lncRNA)pathway and mitogen-activated protein kinases(MAPKs)pathway. In addition, more importantly, never in mitosis aspergillus-related kinase 7(Nek7), as a kinase regulator, could target-combine with NLRP3 at upstream to activate NLRP3 inflammasome. Some extracts of Chinese herbal medicines(CHMs)such as quercetin, curcumin, cepharanthine, piperine and salidroside, as well as Chinese herbal compound prescriptions such as Wumei Pills both could treat NLRP3 inflammasome to ameliorate inflammatory renal damage in DN. Therefore, accurately clarifying the targets of anti-inflammatory CHMs and Chinese herbal compound prescriptions delaying DN progression by targeting the molecular regulative mechanisms of NLRP3 inflammasome activation will be one of the development directions in the future.
Caspase 1/immunology*
;
Diabetes Mellitus/drug therapy*
;
Diabetic Nephropathies/immunology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Inflammasomes/immunology*
;
Interleukin-18/immunology*
;
Interleukin-1beta/immunology*
;
NIMA-Related Kinases
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*