1.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
2.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
3.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
4.Therapeutic effects of natural products on animal models of chronic obstructive pulmonary disease.
Xinru FEI ; Guixian YANG ; Junnan LIU ; Tong LIU ; Wei GAO ; Dongkai ZHAO
Journal of Central South University(Medical Sciences) 2025;50(6):1067-1079
Chronic obstructive pulmonary disease (COPD) currently lacks effective treatments to halt disease progression, making the search for preventive and therapeutic drugs a pressing issue. Natural products, with their accessibility, affordability, and low toxicity, offer promising avenues. Investigating the pharmacological effects and related signaling mechanisms of active components from natural products on COPD animal models induced by various triggers has become an important focus. In animal models induced by cigarette smoke, cigarette smoke combined with lipopolysaccharide (LPS), air pollution, elastase, bacterial or viral infections, the active compounds of natural products, such as flavonoids, terpenoids, and phenolics, can exert anti-inflammatory, antioxidant, mucus-regulating, and airway remodeling-inhibiting effects through key signaling pathways including nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK). These findings not only provide a theoretical basis for the clinical diagnosis and treatment of COPD but also point to new directions for future scientific research.
Pulmonary Disease, Chronic Obstructive/etiology*
;
Animals
;
Disease Models, Animal
;
Biological Products/pharmacology*
;
Humans
;
NF-kappa B/metabolism*
;
Flavonoids/pharmacology*
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Terpenes/pharmacology*
;
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Smoke/adverse effects*
;
Phenols/therapeutic use*
5.Huoxue Shufeng Granule alleviates central sensitization in chronic migraine mice via TLR4/NF-κB inflammatory pathway.
Xiaotao LIANG ; Yifan XIONG ; Xueqi LIU ; Xiaoshan LIANG ; Xiaoyu ZHU ; Wei XIE
Journal of Southern Medical University 2025;45(5):986-994
OBJECTIVES:
To investigate the therapeutic mechanism of Huoxue Shufeng Granules (HXSFG) for alleviating central sensitization in a mouse model of chronic migraine (CM).
METHODS:
We analyzed the main chemical components of HXSFG through literature review and explored their pharmacological mechanisms by bioinformatics analyses. In a male C57BL/6J mouse model of CM established by intraperitoneal injections of nitroglycerin (10 mg/kg) every other day (5 injections), the effects of gavage with low, and high doses of HXSFG or intraperitoneal injections of topiramate for ameliorating central sensitization were evaluated using Von Frey test and a hot plate apparatus; the changes in expressions of inflammatory factors, the proteins in the TLR4/NF‑κB signaling pathway, and activation of c-Fos and CGRP were detected using RT-qPCR, Western blotting and immunofluorescence staining.
RESULTS:
Network pharmacology analysis suggested that the main active components in HXSFG for alleviating CM included formononetin, paeoniflorin, quercetin, and tanshinone. Gene Ontology (GO) enrichment analysis identified 492 GO entries, comprising 366 biological processes, 46 cellular components, and 80 molecular functions. KEGG pathway enrichment analysis indicated that the Toll-like receptor and NF‑κB signaling pathways were crucial in mediating the therapeutic effects of HXSFG on CM. In the mouse models of CM, both topiramate and HXSFG treatments alleviated the symptoms of central sensitization, evidenced by improved mechanical and thermal pain thresholds in the mice. HXSFG significantly reduced the expression of c-Fos and CGRP, improved inflammatory markers, and downregulated the expressions of TLR4, p-NF‑κB, IL-1β, and TNF‑α proteins in the mouse models.
CONCLUSIONS
HXSFG effectively alleviates central sensitization in CM mice by modulating the inflammatory pathways and inhibiting the TLR4/ NF-κB signaling pathway, suggesting its potential as a therapeutic option for CM.
Animals
;
Toll-Like Receptor 4/metabolism*
;
NF-kappa B/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Migraine Disorders/metabolism*
;
Disease Models, Animal
;
Inflammation
6.Yiqi Zishen Formula ameliorates inflammation in mice with chronic obstructive pulmonary disease by inhibiting the PI3K/Akt/NF-κB signaling pathway.
Liming WANG ; Hongrui CHEN ; Yan DU ; Peng ZHAO ; Yujie WANG ; Yange TIAN ; Xinguang LIU ; Jiansheng LI
Journal of Southern Medical University 2025;45(7):1409-1422
OBJECTIVES:
To investigate pharmacologically active components of Yiqi Zishen Formula (YZF) and their mechanisms for alleviating airway inflammation in mice with chronic obstructive pulmonary disease (COPD).
METHODS:
Ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry was employed to characterize the chemical components in YZF and YZF-medicated rat serum. A compound-disease target network was constructed based on serum components of YZF to screen the key pathways and targets using enrichment analysis. A mouse model of cigarette smoke-induced COPD was used to evaluate the anti-inflammatory effect of YZF and validate the expression of key proteins in network pharmacology-enriched pathways. Fifty male C57BL/6J mice were randomized equally into control group, COPD model group, high- and low-dose YZF treatment groups, and N-acetylcysteine treatment group. Pulmonary function of the mice was assessed using whole-body plethysmography, and lung histopathology, alveolar structure, and airway remodeling were analyzed using HE staining. The levels of IL-1β, IL-6, and TNF‑α in bronchoalveolar lavage fluid (BALF) were determined with ELISA, and pulmonary expressions of PI3K, Akt, phosphorylated Akt (p-Akt), p65, and phosphorylated p65 (p-p65) were detected using immunohistochemistry.
RESULTS:
We identified a total of 156 chemical components (including 26 flavonoids or flavonoid glycosides, 27 alkaloids, and 11 saponins) in YZF and 43 prototype components in medicated rat serum. Network pharmacology revealed 704 YZF-related targets and 1199 COPD-associated targets. Integrated analysis suggested that the anti-COPD effects of YZF were associated with the PI3K-Akt signaling pathway. In mouse models of COPD, YZF treatment significantly increased mean alveolar number and peak expiratory flow (P<0.05), reduced mean linear intercept, bronchial wall thickness, lung coefficient, and BALF cytokine levels, and suppressed the expressions of PI3K, Akt, p-Akt, p65, and p-p65 in the lung tissues.
CONCLUSIONS
YZF alleviates COPD symptoms and airway inflammation in mice possibly by inhibiting the PI3K/Akt/NF‑κB pathway through its multiple components that interact with multiple targets.
Animals
;
Pulmonary Disease, Chronic Obstructive/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Signal Transduction/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Inflammation/drug therapy*
;
Rats
7.Qihuang Jianpi Zishen Granules ameliorate renal damage in MRL/lpr mice by inhibiting the MyD88/NF-κB pathway.
Zhongfu TANG ; Chuanbing HUANG ; Ming LI ; Lili CHENG ; Junjie CHEN ; Shuangshuang SHANG ; Sidi LIU
Journal of Southern Medical University 2025;45(8):1625-1632
OBJECTIVES:
To investigate the mechanism of Qihuang Jianpi Zishen Granules (QJZ) for ameliorating renal damage in MRL/lpr mice.
METHODS:
With 6 female C57BL/6 mice as the normal control group, 30 female MRL/lpr mice were randomized into model group, QJZ treatment groups at low, moderate and high doses, and prednisone treatment group (n=6). After 8 weeks of treatment, the mice were examined for 24-h urine protein, creatinine and albumin levels, serum levels of IgG, complement 3 (C3), C4, anti-dsDNA, interferon γ (IFN‑γ) and interleukin 17 (IL-17). Kidney tissues were sampled for histopathological examination with HE staining and observation of glomerular ultrastructure changes using transmission electron microscopy (TEM). The expressions of MyD88/NF-κB pathway-related molecules in the kidney tissue were detected using RT-qPCR, Western blotting and immunohistochemistry.
RESULTS:
Compared with those in the model group, the mice treated with QJZ at the 3 doses and prednisone showed significant reductions in the renal injury biomarkers and serum IgG, anti-dsDNA, IFN‑γ and IL-17 levels and elevation of serum C3 and C4 levels. HE staining revealed lessened glomerular endothelial cell proliferation and mesangial thickening in all the treatment groups. TEM observation further demonstrated reduced electron-dense deposits and diminished inflammatory cell infiltration in the glomeruli in the intervention groups. QJZ at the 3 doses and prednisone treatment all significantly lowered renal expression levels of MyD88, NF-κB, p65 and p52 in the mouse models.
CONCLUSIONS
QJZ can improve renal damage in MRL/lpr mice possibly by inhibiting overactivation of the MyD88/NF-κB pathway.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Female
;
Mice, Inbred C57BL
;
Mice, Inbred MRL lpr
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Kidney/metabolism*
;
Interleukin-17
8.Aucubin alleviates knee osteoarthritis in mice by suppressing the NF‑κB signaling pathway.
Yongxin MAI ; Shuting ZHOU ; Ruijia WEN ; Jinfang ZHANG ; Dongxiang ZHAN
Journal of Southern Medical University 2025;45(10):2104-2110
OBJECTIVES:
To assess the therapeutic effect of aucubin in mice with knee osteoarthritis (KOA) and investigate the underlying mechanism.
METHODS:
Sixty C57BL/6J mice were randomized equally into sham operation group, KOA model group, glucosamine (positive control) treatment group, and low-, medium-, and high-dose aucubin treatment groups (2, 4, and 8 mg/kg, respectively). KOA mouse models were established by transection of the anterior cruciate ligament (ACL), and the treatment was initiated on day 1 postoperatively and administered weekly for 8 weeks. Safranin O-fast green staining, immunohistochemistry, and microCT were used to evaluate the changes in cartilage pathology, inflammatory protein expression, and subchondral bone volume fraction (BV/TV). The expression levesl of COL2, SOX9, p-P65, IL-1β and MMP13 proteins in the cartilage tissues were detected using Western blotting. In a chondrocyte model with IL-1β treatment for mimicking KOA, the effect of aucubin on chondrogenic differentiation was observed with Alcian blue and Safranin O staining, and cellular COL2, SOX9 and TNF‑α mRNA expressions were detected with RT-qPCR.
RESULTS:
Compared with those in the model group, the mouse models receiving aucubin treatment showed significantly upregulated COL2 and SOX9 protein levels and downregulated p-P65, IL-1β and MMP13 expressions in the cartilage tissues. In the IL-1β-induced chondrocyte model, aucubin treatment significantly upregulated the mRNA expressions of SOX9 and COL2 but lowered the mRNA expression of TNF-α. Alcian blue and Safranin O staining confirmed that aucubin promoted the synthesis of cartilage extracellular matrix and enhanced chondrogenic differentiation of the cells.
CONCLUSIONS
Aucubin can effectively alleviate KOA in mice by inhibiting NF‑κB-mediated cartilage inflammation, promoting cartilage matrix synthesis, and improving subchondral bone microstructure.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis, Knee/drug therapy*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
SOX9 Transcription Factor/metabolism*
;
Chondrocytes/drug effects*
;
Male
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Collagen Type II/metabolism*
;
Disease Models, Animal
9.Puerarin alleviates rheumatoid arthritis in rats by modulating TAK1-mediated TLR4/NF-κB signaling pathway.
Maiyuan XU ; Ni LI ; Jiayi LI ; Tao ZHANG ; Liwen MA ; Tao LIN ; Haonan YU ; Ning WU ; Zunqiu WU ; Li HUANG
Journal of Southern Medical University 2025;45(10):2231-2239
OBJECTIVES:
To explore the therapeutic mechanism of puerarin for alleviating synovitis in rats with collagen-induced arthritis (CIA).
METHODS:
In a SD rat model of CIA, we tested the effects of daily gavage of puerarin at low, moderate and high doses (10, 30, and 100 mg/kg, respectively) for 3 weeks, with tripterygium glycosides (GTW, 10 mg/kg) as the positive control, on swelling in the hind limb joints regions evaluated by arthritis index scoring. Mass fraction of the liver of the rats was calculated, and pathologies in joint synovial membrane were observed with HE staining. The expressions of transforming growth factor β‑activated kinase-1 (TAK1), Toll-like receptor 4 (TLR4), and nuclear factor kappa-Bp65 (NF‑κB p65) at the mRNA and protein levels in the synovial tissues were detected using Real-time PCR and Western blotting.
RESULTS:
Compared with those in the model group, the rats in GTW group and high-dose puerarin group showed significantly reduced mass fraction of the liver. Treatment with GTW and puerarin at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, and improved synovitis in CIA rats (P<0.05), and the effects of puerarin showed an obvious dose dependence. Both GTW and puerarin treatments significantly lowered TAK1, TLR4, and NF‑κB p65 mRNA and protein expressions in the synovium of CIA rats.
CONCLUSIONS
Puerarin alleviates synovium damages in CIA rats possibly by suppressing the TLR4/NF‑κB signaling pathway via downregulating TAK1 expression.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
MAP Kinase Kinase Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Arthritis, Rheumatoid/drug therapy*
;
NF-kappa B/metabolism*
;
Isoflavones/therapeutic use*
;
Male
;
Arthritis, Experimental/drug therapy*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/metabolism*
10.Dahuang Zhechong Pill Alleviates Liver Fibrosis Progression by Regulating p38 MAPK/NF-κ B/TGF-β1 Pathway.
Xiao-Yan HE ; Xiao-Jiao XIONG ; Mei-Jun LIU ; Jing-Tao LIANG ; Fu-You LIU ; Jing-Yi XIAO ; Li-Juan WU
Chinese journal of integrative medicine 2024;30(12):1113-1120
OBJECTIVE:
To explore the effect and mechanism of Dahuang Zhechong Pill (DHZCP) on liver fibrosis.
METHODS:
Liver fibrosis cell model was induced by transforming growth factor-β (TGF-β) in hepatic stellate cells (HSC-T6). DHZCP medicated serum (DMS) was prepared in rats. HSC-T6 cells were divided into the control (15% normal blank serum culture), TGF-β (15% normal blank serum + 5 ng/mL TGF-β), DHZCP (15% DMS + 5 ng/mL TGF-β), DHZCP+PDTC [15% DMS + 4 mmol/L ammonium pyrrolidine dithiocarbamate (PDTC)+ 5 ng/mL TGF-β], and PDTC groups (4 mmol/L PDTC + 5 ng/mL TGF-β). Cell activity was detected by cell counting kit 8 and levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the cell supernatant were determined by enzyme-linked immunosorbnent assay. Western blot was used to measure the expressions of p38 mitogen-activated protein kinase/nuclear factor kappa B/transforming growth factor-β1 (p38 MAPK/NF-κ B/TGF-β1) pathway related proteins, and the localization and expressions of these proteins were observed by immunofluorescence staining.
RESULTS:
DHZCP improves the viability of cells damaged by TGF-β and reduces inflammatory cytokines and ALT and AST levels in the supernatant of HSC-T6 cells induced with TGF-β (P<0.05 or P<0.01). Compared with the TGF-β group, NF-κ B p65 levels in the DHZCP group were decreased (P<0.05). p38 MAPK and NF-κ B p65 levels in the DHZCP+PDTC were also reduced (P<0.01). Compared with the TGF-β group, the protein expression of Smad2 showed a downward trend in the DHZCP, DHZCP+PDTC, and PDTC groups (all P<0.01), and the decreasing trend of Samd3 was statistically significant only in DHZCP+PDTC group (P<0.01), whereas Smad7 was increased (P<0.05 or P<0.01).
CONCLUSION
DHZCP can inhibit the process of HSC-T6 cell fibrosis by down-regulating the expression of p38 MAPK/NF-κ B/TGF-β1 pathway.
Animals
;
Liver Cirrhosis/pathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Male
;
Signal Transduction/drug effects*
;
Rats
;
Disease Progression
;
Cell Line
;
Hepatic Stellate Cells/pathology*
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail