1.Neuronal signaling in central nervous system.
Acta Physiologica Sinica 2011;63(1):1-8
A new method of axon recording through axon bleb has boosted the studies on the functional role of central nervous system (CNS) axons. Using this method, we have revealed the mechanisms underlying the initiation and propagation of the digital-mode signal, all-or-none action potentials (APs), in neocortical pyramidal neurons. Accumulation of the low-threshold Na(+) channel subtype Na(v)1.6 at the distal end of the axon initial segment (AIS) determines the lowest threshold for AP initiation, whereas accumulation of the high-threshold subtype Na(v)1.2 at the proximal region of the AIS promotes AP backpropagation to the soma and dendrites. Through dual recording from the soma and the axon, we have showed that subthreshold membrane potential (V(m)) fluctuations in the soma propagate along the axon to a long distance and probably reach the axon terminals. Paired recording from cortical neurons has revealed that these V(m) changes in the soma modulate AP-triggered synaptic transmission. This new V(m)-dependent mode of synaptic transmission is called analog communication. Unique properties of axonal K(+) channels (K(v)1 channels) may contribute to shaping the AP waveform, particularly its duration, and thus controlling synaptic strength at different levels of presynaptic V(m). The level of background Ca(2+) may also participate in mediating the analog signaling. Together, these findings enrich our knowledge on the principles of neuronal signaling in the CNS and help understand how the brain works.
Action Potentials
;
physiology
;
Animals
;
Axons
;
physiology
;
Central Nervous System
;
cytology
;
physiology
;
Humans
;
Membrane Potentials
;
physiology
;
NAV1.2 Voltage-Gated Sodium Channel
;
physiology
;
NAV1.6 Voltage-Gated Sodium Channel
;
physiology
;
Neocortex
;
cytology
;
physiology
;
Patch-Clamp Techniques
;
Pyramidal Cells
;
physiology
;
Sodium Channels
;
physiology
2.Expression and function of voltage-gated Na+ channel isoforms in rat sinoatrial node.
Xin HUANG ; Ai-Qun MA ; Pei YANG ; Yuan DU ; Yu-Tao XI ; Tao GENG
Journal of Southern Medical University 2007;27(1):52-55
OBJECTIVETo detect the expression of voltage-gated Na(+) channel (NaCh) isoforms in rat sinoatrial node and explore their functions.
METHODSExpressions of NaCh isoforms Nav1.1, Nav1.2, Nav1.3, Nav1.5, Nav1.6 and Nav1.7 in the rat sinoatrial node were detected by immunohistochemistry. The functional roles of the NaChs were tested by observing the effect of tetrodotoxin, a specific blocker of NaChs, on the intrinsic heart rate of isolated rat working heart.
RESULTSThe tetrodotoxin- sensitive neuronal isoforms Nav1.1, Nav1.6 and Nav1.7 as well as the tetrodotoxin-resistant cardiac isoform Nav1.5 were present in the rat sinoatrial node, and the neuronal isoforms were more abundant than Nav1.5 (P<0.05). The selective blockade of tetrodotoxin-sensitive isoforms (presumably Nav1.1, Nav1.6 and Nav1.7) by 100 nmol/L tetrodotoxin scarcely affected the intrinsic heart rate (0.5-/+2.9%, P>0.05) while blockade of tetrodotoxin-resistant isoform (presumably Nav1.5) by 2 micromol/L tetrodotoxin resulted in an obvious decline in the intrinsic heart rate (22.1-/+2.1%, P<0.001).
CONCLUSIONSNav1.1, Nav1.5, Nav1.6 and Nav1.7 are all present in rat sinoatrial node. Although neuronal isoforms are more abundant, Nav1.5 seems to contribute more to activity of the sinoatrial node.
Animals ; Heart Rate ; drug effects ; physiology ; Immunohistochemistry ; Ion Channel Gating ; drug effects ; physiology ; Male ; NAV1.1 Voltage-Gated Sodium Channel ; NAV1.5 Voltage-Gated Sodium Channel ; NAV1.6 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins ; biosynthesis ; Protein Isoforms ; biosynthesis ; Rats ; Sinoatrial Node ; drug effects ; metabolism ; physiology ; Sodium Channels ; biosynthesis ; Tetrodotoxin ; pharmacology
3.Localization and expression pattern of MDM2 in axon initial segments of neuron in rodent brain.
Hong ZHAO ; Dan-Dan WANG ; Yu-Xia XU ; Cui-Qing ZHU
Acta Physiologica Sinica 2014;66(2):107-117
To investigate the murine double minute 2 (MDM2) localization and expression pattern in brain, immunohistochemistry, immunofluorescent staining and immunoblotting methods were used to analyze it in brains of Kunming mice during postnatal development, in brains of adult SD rats and in primarily cultured neurons. The distribution of MDM2 and markers of axon initial segment (AIS) was analyzed by double immunolabeling. In addition, Nutlin-3, a MDM2 antagonist, was injected into hippocampus to analyze the effect on the distribution of MDM2 and AIS protein Nav1.6 in AIS. The results showed that the dynamic expression patterns of MDM2 protein in cerebral cortex and hippocampus of Kunming mice after birth were different. However, it was similar that MDM2 was gradually enriched to AIS during postnatal development, especially after postnatal day 7. The MDM2 in AIS was also observed in different brain regions of adult SD rat brain and in primarily cultured neurons, where MDM2 was colocalized with AIS markers such as AnkG and Nav1.6. In addition, hippocampal injection of Nutlin-3 could induce the loss of the characteristic distribution of MDM2 in AIS. Moreover, Nutlin-3 not only caused a decrease of Nav1.6 distributing in AIS, but also disrupted the polarized distribution of MAP2 in neurons. These results indicate that MDM2 can be enriched at the AIS of adult rodent brain, which might play a role in regulation of the maintenance of AIS function and neuronal polarity.
Animals
;
Axons
;
metabolism
;
Cerebral Cortex
;
metabolism
;
Hippocampus
;
metabolism
;
Imidazoles
;
pharmacology
;
Mice
;
NAV1.6 Voltage-Gated Sodium Channel
;
metabolism
;
Neurons
;
metabolism
;
Piperazines
;
pharmacology
;
Proto-Oncogene Proteins c-mdm2
;
metabolism
;
Rats
;
Rats, Sprague-Dawley