4.Genetic Analysis of SCN5A in Korean Patients Associated with Atrioventricular Conduction Block.
Hyoung Seob PARK ; Yoon Nyun KIM ; Young Soo LEE ; Byung Chun JUNG ; Sang Hee LEE ; Dong Gu SHIN ; Yongkeun CHO ; Myung Hwan BAE ; Sang Mi HAN ; Myung Hoon LEE
Genomics & Informatics 2012;10(2):110-116
Recent several studies have shown that the genetic variation of SCN5A is related with atrioventricular conduction block (AVB); no study has yet been published in Koreans. Therefore, to determine the AVB-associated genetic variation in Korean patients, we investigated the genetic variation of SCN5A in Korean patients with AVB and compared with normal control subjects. We enrolled 113 patients with AVB and 80 normal controls with no cardiac symptoms. DNA was isolated from the peripheral blood, and all exons (exon 2-exon 28) except the untranslated region and exon-intron boundaries of the SCN5A gene were amplified by multiplex PCR and directly sequenced using an ABI PRISM 3100 Genetic Analyzer. When a variation was discovered in genomic DNA from AVB patients, we confirmed whether the same variation existed in the control genomic DNA. In the present study, a total of 7 genetic variations were detected in 113 AVB patients. Of the 7 variations, 5 (G87A-A29A, intervening sequence 9-3C>A, A1673G-H558R, G3578A-R1193Q, and T5457C-D1819D) have been reported in previous studies, and 2 (C48G-F16L and G3048A-T1016T) were novel variations that have not been reported. The 2 newly discovered variations were not found in the 80 normal controls. In addition, G298S, G514C, P1008S, G1406R, and D1595N, identified in other ethnic populations, were not detected in this study. We found 2 novel genetic variations in the SCN5A gene in Korean patients with AVB. However, further functional study might be needed.
Atrioventricular Block
;
DNA
;
Exons
;
Genetic Variation
;
Humans
;
Introns
;
Multiplex Polymerase Chain Reaction
;
NAV1.5 Voltage-Gated Sodium Channel
;
Untranslated Regions
5.Genetic Analysis of SCN5A in Korean Patients Associated with Atrioventricular Conduction Block.
Hyoung Seob PARK ; Yoon Nyun KIM ; Young Soo LEE ; Byung Chun JUNG ; Sang Hee LEE ; Dong Gu SHIN ; Yongkeun CHO ; Myung Hwan BAE ; Sang Mi HAN ; Myung Hoon LEE
Genomics & Informatics 2012;10(2):110-116
Recent several studies have shown that the genetic variation of SCN5A is related with atrioventricular conduction block (AVB); no study has yet been published in Koreans. Therefore, to determine the AVB-associated genetic variation in Korean patients, we investigated the genetic variation of SCN5A in Korean patients with AVB and compared with normal control subjects. We enrolled 113 patients with AVB and 80 normal controls with no cardiac symptoms. DNA was isolated from the peripheral blood, and all exons (exon 2-exon 28) except the untranslated region and exon-intron boundaries of the SCN5A gene were amplified by multiplex PCR and directly sequenced using an ABI PRISM 3100 Genetic Analyzer. When a variation was discovered in genomic DNA from AVB patients, we confirmed whether the same variation existed in the control genomic DNA. In the present study, a total of 7 genetic variations were detected in 113 AVB patients. Of the 7 variations, 5 (G87A-A29A, intervening sequence 9-3C>A, A1673G-H558R, G3578A-R1193Q, and T5457C-D1819D) have been reported in previous studies, and 2 (C48G-F16L and G3048A-T1016T) were novel variations that have not been reported. The 2 newly discovered variations were not found in the 80 normal controls. In addition, G298S, G514C, P1008S, G1406R, and D1595N, identified in other ethnic populations, were not detected in this study. We found 2 novel genetic variations in the SCN5A gene in Korean patients with AVB. However, further functional study might be needed.
Atrioventricular Block
;
DNA
;
Exons
;
Genetic Variation
;
Humans
;
Introns
;
Multiplex Polymerase Chain Reaction
;
NAV1.5 Voltage-Gated Sodium Channel
;
Untranslated Regions
6.Desmoplakin expression silencing affects cardiac voltage-gated sodium channel Nav1.5 in HL-1 cells.
Qianhuan ZHANG ; Chunyu DENG ; Fang RAO ; Xiaoying LIU ; Liping MAI ; Jiening ZHU ; Honghong TAN ; Shulin WU
Journal of Southern Medical University 2013;33(7):983-989
OBJECTIVETo investigate the association of desmoplakin with the distribution and function of Nav1.5 by RNA silencing technology in HL-1 cells.
METHODSHL-1 cells with desmoplakin expression suppression by RNA silencing were examined for desmoplakin and Nav1.5 protein expressions by Western blotting, and the distribution and co-location of desmoplakin and Nav1.5 protein were detected by immunofluorescence staining. Patch-clamp recording was applied to analyze the changes in whole-cell sodium current after desmoplakin silencing.
RESULTSCompared with the untreated group and negative control group, the cells with desmoplakin silencing showed obviously reduced expressions of desmoplakin and Nav1.5 proteins. Co-localization of desmoplakin and Nav1.5 was detected at cell-cell contact in untreated and control conditions, and desmoplakin expression silencing induced a drastic redistribution of Nav1.5 with decreased peak current density (156.3∓6.2 vs 41.8∓3.1, n=6, P<0.05), a shift in voltage dependence of steady-state inactivation (-42 mV vs -61 mV, n=5, P<0.05), and prolonged time of recovery from inactivation.
CONCLUSIONDesmoplakin silencing caused redistribution of Nav1.5 protein and also changes in its electrophysiological properties in HL-1 cells.
Animals ; Cell Line ; Desmoplakins ; genetics ; metabolism ; Gene Silencing ; Mice ; Mutation ; Myocytes, Cardiac ; metabolism ; NAV1.5 Voltage-Gated Sodium Channel ; metabolism
7.Long QT syndrome gene diagnosis by haplotype analysis.
Jiang-fang LIAN ; Chang-cong CUI ; Xiao-lin XUE ; Chen HUANG ; Han-bing CUI ; Hai-zhu ZHANG
Chinese Journal of Medical Genetics 2004;21(3):272-273
OBJECTIVEThree long QT syndrome(LQTS) pedigrees were brought together for genetic diagnosis by using short tandem repeat(STR) markers.
METHODSGenomic DNA was extracted from blood samples. STR markers (D7S1824, D7S2439, D7S483, D3S1298, D3S1767, D3S3521) in or spanning the HERG and SCN5A gene were amplified; the haplotype analysis for LQTS was performed.
RESULTSClinical diagnosis showed that 15 are LQTS patients (3 died) and 11 are probable patients. Linkage analysis showed that LQTS patients are linked with the SCN5A gene in family 1, HERG is linked with the disease in family 2 and 3. Fourteen gene carriers were identified, 2 patients and 7 probable patients were excluded.
CONCLUSIONLinkage analysis using STR markers can serve as useful tool for presymptomatic diagnosis.
ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels ; Female ; Genetic Linkage ; Haplotypes ; Humans ; Long QT Syndrome ; genetics ; Male ; NAV1.5 Voltage-Gated Sodium Channel ; Pedigree ; Potassium Channels ; genetics ; Potassium Channels, Voltage-Gated ; Sodium Channels ; genetics ; Tandem Repeat Sequences
8.Expression and function of voltage-gated Na+ channel isoforms in rat sinoatrial node.
Xin HUANG ; Ai-Qun MA ; Pei YANG ; Yuan DU ; Yu-Tao XI ; Tao GENG
Journal of Southern Medical University 2007;27(1):52-55
OBJECTIVETo detect the expression of voltage-gated Na(+) channel (NaCh) isoforms in rat sinoatrial node and explore their functions.
METHODSExpressions of NaCh isoforms Nav1.1, Nav1.2, Nav1.3, Nav1.5, Nav1.6 and Nav1.7 in the rat sinoatrial node were detected by immunohistochemistry. The functional roles of the NaChs were tested by observing the effect of tetrodotoxin, a specific blocker of NaChs, on the intrinsic heart rate of isolated rat working heart.
RESULTSThe tetrodotoxin- sensitive neuronal isoforms Nav1.1, Nav1.6 and Nav1.7 as well as the tetrodotoxin-resistant cardiac isoform Nav1.5 were present in the rat sinoatrial node, and the neuronal isoforms were more abundant than Nav1.5 (P<0.05). The selective blockade of tetrodotoxin-sensitive isoforms (presumably Nav1.1, Nav1.6 and Nav1.7) by 100 nmol/L tetrodotoxin scarcely affected the intrinsic heart rate (0.5-/+2.9%, P>0.05) while blockade of tetrodotoxin-resistant isoform (presumably Nav1.5) by 2 micromol/L tetrodotoxin resulted in an obvious decline in the intrinsic heart rate (22.1-/+2.1%, P<0.001).
CONCLUSIONSNav1.1, Nav1.5, Nav1.6 and Nav1.7 are all present in rat sinoatrial node. Although neuronal isoforms are more abundant, Nav1.5 seems to contribute more to activity of the sinoatrial node.
Animals ; Heart Rate ; drug effects ; physiology ; Immunohistochemistry ; Ion Channel Gating ; drug effects ; physiology ; Male ; NAV1.1 Voltage-Gated Sodium Channel ; NAV1.5 Voltage-Gated Sodium Channel ; NAV1.6 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins ; biosynthesis ; Protein Isoforms ; biosynthesis ; Rats ; Sinoatrial Node ; drug effects ; metabolism ; physiology ; Sodium Channels ; biosynthesis ; Tetrodotoxin ; pharmacology
9.Novel SCN5A gene mutations associated with Brugada syndrome: V95I, A1649V and delF1617.
Peng LIANG ; Wen-ling LIU ; Da-yi HU ; Cui-lan LI ; Wu-hua TAO ; Lei LI
Chinese Journal of Cardiology 2006;34(7):616-619
OBJECTIVEBrugada syndrome is an inherited channelopathy that characterized by ST-segment elevation in the right precordial lead (V(1)-V(3)) on the electrocardiogram with or without right bundle branch block and related with high risk of sudden cardiac death and structurally normal hearts. The first and only gene linked to this disease is SCN5A, a gene encodes for alpha subunit of the cardiac sodium channel. The objective of this study is to explore SCN5A gene mutations in Chinese patients with Brugada syndrome.
METHODSFour patients diagnosed as Brugada syndrome and nine patients with suspected Brugada syndrome were chosen for the study. The exons in the functional regions of SCN5A gene were amplified with polymerase chain reaction and the amplified products were sequenced with Sanger method. If a mutation was identified, patient's family members were also screened.
RESULTSTwo heterozygous mutations were found in one family diagnosed as Brugada syndrome. One missense mutation was a G-->A transition in the first nucleotide of codon 95 in SCN5A gene exon 3, which was predicted to result in substitution of Valine with Isoleucine (V95I). The other missense mutation was a C-->T transition in the second nucleotide of codon 1649 in SCN5A gene exon 28, which was predicted to result in substitution of Alanine with Valine (A1649V). A heterozygous mutation was identified in one family suspected to have the disease. The mutation was a three nucleotides (TCT) deletion that caused Phenylalanine deletion in codon 1617 in SCN5A gene exon 28. The three mutations were not detected in 100 control chromosomes.
CONCLUSIONSMutation in SCN5A gene is one of the causes of Brugada syndrome in Chinese. Three novel SCN5A gene mutations were identified in Chinese with Brugada syndrome, which expands the spectrum of SCN5A mutations associated with the disease.
Adolescent ; Adult ; Aged ; Brugada Syndrome ; genetics ; Case-Control Studies ; Exons ; genetics ; Humans ; Male ; Middle Aged ; Muscle Proteins ; genetics ; Mutation ; NAV1.5 Voltage-Gated Sodium Channel ; Sodium Channels ; genetics
10.Detection of gene mutations of SCN5A in 7 patients with Brugada syndrome.
Bin-bin YUAN ; Qi-jun SHAN ; Bing YANG ; Ming-long CHEN ; Jian-gang ZOU ; Chun CHEN ; Dong-jie XU ; Ke-jiang CAO
Chinese Journal of Cardiology 2008;36(5):404-407
OBJECTIVEBrugada syndrome is linked to sodium channel mutations and could induce arrhythmias that even lead to sudden death. The purpose of this study was to detect if there was gene mutation of SCN5A in 7 patients with Brugada syndrome and explore the molecular genetic characteristics of this disease.
METHODGenomic DNA was extracted from peripheral blood of all 7 patients with Brugada syndrome and 41 pairs of PCR primers were designed to amplify all the 28 exons of SCN5A.
RESULTThere was no novel mutation in exons of Gene SCN5A in these patients with Brugada syndrome.
CONCLUSIONBrugada syndrome might associated gene mutation or other mechanisms independent of SCN5A gene mutation.
Adult ; Brugada Syndrome ; genetics ; DNA Mutational Analysis ; Exons ; Humans ; Male ; Middle Aged ; Muscle Proteins ; genetics ; Mutation ; NAV1.5 Voltage-Gated Sodium Channel ; Sodium Channels ; genetics