1.Phenotypic and genetic analysis of a family affected with microvillus inclusion disease.
Man MAO ; . WENWANGRONG@YEAH.NET. ; Li GUO ; Zhanhui ZHANG ; Bin WANG ; Shanhua HUANG ; Yuanzong SONG ; Fengping CHEN ; Wangrong WEN
Chinese Journal of Medical Genetics 2016;33(6):792-796
OBJECTIVETo explore the clinical features and mutations of MYO5B gene in a family affected with microvillus inclusion disease.
METHODSClinical data of an infant affected with microvillus inclusion disease was collected. Genomic DNA was extracted from peripheral blood samples from the patient and her parents. PCR amplification and Sanger sequencing were performed to analyze all the exons and their flanking sequences of the MYO5B gene.
RESULTSThe patient presented with complicated manifestations including respiratory distress syndrome, dehydration, acidosis, bowel dilatation, liver and kidney dysfunction, and severe and intractable diarrhea. A compound mutation of the MYO5B gene, i.e., IVS37-1G>C/c.2729_2731delC (p.R911Afs916X), was discovered in the patient. The former was a splice-site mutation inherited from the mother, while the latter was a frameshift mutation inherited from the father. Both were not reported previously.
CONCLUSIONBased on the clinical and molecular evidence, the patient was diagnosed with microvillus inclusion disease. Above finding has expanded the mutation spectrum of the MYO5B gene, which can provide valuable information for genetic counseling for the family.
Family ; Female ; Genetic Testing ; methods ; Genotype ; Humans ; Infant ; Malabsorption Syndromes ; genetics ; Male ; Microvilli ; genetics ; pathology ; Mucolipidoses ; genetics ; Mutation ; genetics ; Myosin Heavy Chains ; genetics ; Myosin Type V ; genetics ; Phenotype
2.Clinical features and MYO5B mutations of a family affected by microvillus inclusion disease.
Ying CHENG ; Hong LIANG ; Na-Li CAI ; Li GUO ; Yu-Ge HUANG ; Yuan-Zong SONG
Chinese Journal of Contemporary Pediatrics 2017;19(9):968-974
Microvillus inclusion disease (MVID) is an autosomal recessive disorder caused by biallelic mutations in the MYO5B or STX3 gene. Refractory diarrhea and malabsorption are the main clinical manifestations. The aim of this study was to investigate the clinical features and MYO5B gene mutations of an infant with MVID. A 21-day-old female infant was referred to the hospital with the complaint of diarrhea for 20 days. On physical examination, growth retardation of the body weight and length was found along with moderately jaundiced skin and sclera. Breath sounds were clear in the two lungs and the heart sounds were normal. The abdomen was distended and the veins in the abdominal wall were observed. The liver and spleen were not palpable. Biochemical analysis revealed raised serum total bile acids, bilirubin, transaminases and γ-glutamyl transpeptidase while decreased levels of serum sodium, chloride, phosphate and magnesium. Blood gas analysis indicated metabolic acidosis. The preliminary diagnosis was congenital diarrhea, and thus parenteral nutrition was given along with other symptomatic and supportive measures. However, diarrhea, metabolic acidosis and electrolyte disturbance were intractable, and the cholestatic indices, including transaminases, γ-glutamyl transpeptidase, bilirubin and total bile acids, remained at increased levels. One month later, the patient was discharged and then lost contact. On genetic analysis, the infant was proved to be a compound heterozygote of the c.310+2Tdup and c.1966C>T(p.R656C) variants of the gene MYO5B, with c.310+2Tdup being a novel splice-site mutation. MVID was thus definitely diagnosed.
Female
;
Humans
;
Infant, Newborn
;
Malabsorption Syndromes
;
diagnosis
;
genetics
;
Microvilli
;
genetics
;
pathology
;
Mucolipidoses
;
diagnosis
;
genetics
;
Mutation
;
Myosin Heavy Chains
;
genetics
;
Myosin Type V
;
genetics
3.A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray.
Chai Young JEON ; Jin Woo PARK ; Jae Mok LEE ; Jo Young SUH
The Journal of the Korean Academy of Periodontology 2004;34(1):205-221
Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that alpha-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and beta-actin, actin-capping protein(beta subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.
Actins
;
Carrier Proteins
;
Collagen
;
Collagen Type I
;
Collagen Type V
;
Connective Tissue
;
Cytoskeletal Proteins
;
DNA, Complementary*
;
Epidermal Growth Factor
;
Fibroblasts*
;
Gene Expression Profiling
;
Gene Expression*
;
Humans
;
Insulin-Like Growth Factor II
;
Muscle, Smooth
;
Myosin Heavy Chains
;
Myosin Light Chains
;
Myosins
;
Nerve Growth Factor
;
Oligonucleotide Array Sequence Analysis*
;
Osteoblasts
;
Periodontal Ligament*
;
Receptors, Fibroblast Growth Factor
;
Receptors, Platelet-Derived Growth Factor
;
Regeneration
;
RNA
;
RNA, Messenger
4.Intramanchette transport during primate spermiogenesis: expression of dynein, myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein, and Rab27b in the manchette during human and monkey spermiogenesis.
Shinichi HAYASAKA ; Yukihiro TERADA ; Kichiya SUZUKI ; Haruo MURAKAWA ; Ikuo TACHIBANA ; Tadashi SANKAI ; Takashi MURAKAMI ; Nobuo YAEGASHI ; Kunihiro OKAMURA
Asian Journal of Andrology 2008;10(4):561-568
AIMTo show whether molecular motor dynein on a microtubule track, molecular motor myosin Va, motor recruiter myosin Va, VIIa-Rab27a/b interacting protein (MyRIP), and vesicle receptor Rab27b on an F-actin track were present during human and monkey spermiogenesis involving intramanchette transport (IMT).
METHODSSpermiogenic cells were obtained from three men with obstructive azoospermia and normal adult cynomolgus monkey (Macaca fascicularis). Immunocytochemical detection and reverse transcription-polymerase chain reaction (RT-PCR) analysis of the proteins were carried out. Samples were analyzed by light microscope.
RESULTSUsing RT-PCR, we found that dynein, myosin Va, MyRIP and Rab27b were expressed in monkey testis. These proteins were localized to the manchette, as shown by immunofluorescence, particularly during human and monkey spermiogenesis.
CONCLUSIONWe speculate that during primate spermiogenesis, those proteins that compose microtubule-based and actin-based vesicle transport systems are actually present in the manchette and might possibly be involved in intramanchette transport.
Actins ; metabolism ; Adult ; Animals ; Biological Transport ; physiology ; Dyneins ; metabolism ; Humans ; Macaca fascicularis ; Male ; Microtubules ; metabolism ; Myosin Heavy Chains ; metabolism ; Myosin Type V ; metabolism ; Myosins ; metabolism ; Spermatids ; cytology ; metabolism ; Spermatogenesis ; physiology ; Testis ; cytology ; metabolism ; Transport Vesicles ; physiology ; Vesicular Transport Proteins ; metabolism ; rab GTP-Binding Proteins ; metabolism