1.A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray.
Chai Young JEON ; Jin Woo PARK ; Jae Mok LEE ; Jo Young SUH
The Journal of the Korean Academy of Periodontology 2004;34(1):205-221
Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that alpha-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and beta-actin, actin-capping protein(beta subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.
Actins
;
Carrier Proteins
;
Collagen
;
Collagen Type I
;
Collagen Type V
;
Connective Tissue
;
Cytoskeletal Proteins
;
DNA, Complementary*
;
Epidermal Growth Factor
;
Fibroblasts*
;
Gene Expression Profiling
;
Gene Expression*
;
Humans
;
Insulin-Like Growth Factor II
;
Muscle, Smooth
;
Myosin Heavy Chains
;
Myosin Light Chains
;
Myosins
;
Nerve Growth Factor
;
Oligonucleotide Array Sequence Analysis*
;
Osteoblasts
;
Periodontal Ligament*
;
Receptors, Fibroblast Growth Factor
;
Receptors, Platelet-Derived Growth Factor
;
Regeneration
;
RNA
;
RNA, Messenger
2.Expression and function of non-muscle myosin-IIA in Fechtner syndrome.
Hai-Yan YANG ; Zhao-Yue WANG ; Li-Juan CAO ; Xiao-Juan ZHAO ; Xia BAI ; Chang-Geng RUAN
Journal of Experimental Hematology 2008;16(4):871-874
The study was purposed to investigate the expression and function of non-muscle myosin heavy chain-IIA (NMMHC-IIA) in Fechtner syndrome in order to explore the pathologic changes of kindy disease and the mechanism of granulocyte inclusion body formation. NMMHC-IIA levels in granulocytes were analyzed by Western-blot, the expressions of NMMHC-IIA, IIB in HEK-293 cells were detected by RT-PCR and were analyzed by co-immunoprecipitation. The results indicated that the IIA/beta-actin ratio for Fechtner syndrome granulocytes was (0.35 +/- 0.12), and obviously decreased as compared with that of normal control (0.87 +/- 0.18) (p < 0.01). The IIA and IIB expressed higher in HEK-293 cells. The interaction of IIA and IIB was confirmed by co-immunoprecipitation in HEK-293 cells. It is concluded that dominant-negative effect of NMMHC-IIA is involved in the formation of inclusion bodies. IIA and IIB show obvious interaction, IIB partly compensates the IIA defect derived from MYH9 mutations, and may delay or prevent the development of clinically relevant abnormalities.
Blood Platelet Disorders
;
genetics
;
metabolism
;
pathology
;
Cell Line
;
Granulocytes
;
pathology
;
Humans
;
Inclusion Bodies
;
pathology
;
Kidney
;
cytology
;
embryology
;
metabolism
;
Mutation
;
Nonmuscle Myosin Type IIA
;
genetics
;
metabolism
;
physiology
;
Nonmuscle Myosin Type IIB
;
genetics
;
metabolism
;
physiology
;
Syndrome
;
Thrombocytopenia
;
genetics
;
metabolism
;
pathology
3.c.359T>C mutation of the MYH14 gene in two autosomal dominant non-syndromic hearing impairment families with common ancestor.
Rong YANG ; Hu LI ; Cheng-xiong ZHAN ; Hai-yan MAO ; Tai-lan ZHAN ; Zheng-feng ZHU ; Ping LIU ; Wen-lin YUAN ; Tie KE ; Qing WANG ; Mu-gen LIU ; Zhao-hui TANG
Chinese Journal of Medical Genetics 2010;27(3):259-262
OBJECTIVETo identify the gene mutation for two Chinese families with autosomal dominant non-syndromic hearing impairment(NSHI).
METHODSTwo NSHI pedigrees with common ancestor were identified by clinical examination and family investigation. Linkage analysis was performed for all known NSHI loci, and all exons and exon-intron boundaries of the non-muscle myosin heavy chain 14 (MYH14) gene were amplified by PCR and sequenced.
RESULTSThe disease-causing gene of these 2 pedigrees was fine mapped to the DFNA4 locus on 19q13.33. A heterozygous transition of c. 359T>C (p.S120L) in MYH14 gene was identified. The mutation was detected in all patients but not in normal members in the two families.
CONCLUSIONIt is the first report that mutation in MYH14 gene can cause dominant non-syndromic hearing impairment in Asian population, suggesting that MYH14 gene can be a disease-causing gene of Chinese patients with hearing impairment.
Female ; Hearing Loss ; genetics ; Humans ; Male ; Microsatellite Repeats ; genetics ; Mutation ; Myosin Heavy Chains ; genetics ; Myosin Type II ; genetics ; Pedigree ; Polymerase Chain Reaction
4.Early effect of Botox-A injection into the masseter muscle of rats: functional and histological evaluation.
Young Min MOON ; Young Jun KIM ; Min Keun KIM ; Seong Gon KIM ; HaeYong KWEON ; Tae Woo KIM
Maxillofacial Plastic and Reconstructive Surgery 2015;37(12):46-
BACKGROUND: The purpose of this study was to evaluate the change of food intake after different dosages of botulinum toxin A (BTX) injection in the animal model. Additionally, the dimensional and histological change at 14 days after BTX injection was also evaluated. METHODS: The comparative study was performed using the BTX injection model in rats (n = 5 for each group). Group 1 was the saline-injected group. Group 2 was the 5-unit BTX-injection group to each masseter muscle. Group 3 was the 10-unit BTX-injection group to each masseter muscle. Food intake rates and body weight were checked daily before and after BTX injection until 10 days. All animals were sacrificed at 14 days after BTX injection, and the specimens underwent hematoxylin and eosin stain and immunohistochemical staining for myosin type II (MYH2). RESULTS: The recovery of food intake in groups 2 and 3 decreased significantly compared with group 1 from day 2 to day 7 and day 9 after injection (p < 0.05). The BTX-treated masseter muscles were significantly smaller than those in group 1 (p = 0.015). The immunohistochemical findings demonstrated that the expression of MYH2 was significantly higher in group 3 compared to groups 1 and 2 (p < 0.001). CONCLUSIONS: BTX injection to the masseter muscle in rats demonstrated short food-intake-rate reduction with recovery until 10 days after injection. The thickness of the masseter muscle and MYH2 expression were significantly changed according to the injected dose of BTX.
Animals
;
Body Weight
;
Botulinum Toxins
;
Eating
;
Eosine Yellowish-(YS)
;
Hematoxylin
;
Masseter Muscle*
;
Models, Animal
;
Myosin Type II
;
Rats*
5.Effects of botulinum toxin type A on the expression of alpha-SMA and myosin-II of fibroblasts in scars.
Tongtong YAN ; Minliang CHEN ; Kui MA ; Liming LIANG ; Chang LIU ; Linying LAI ; Xiaobing FU
Chinese Journal of Plastic Surgery 2014;30(2):118-121
OBJECTIVETo investigate the effects of botulinum toxin type A (BTXA) on the expression of alpha smooth muscle actin(alpha-SMA) and myosin-II of fibroblasts in scars. Methods Fibroblasts were isolated from tissue specimens of scars contracture. Cells from passages 3-5 were randomly divided into 3 groups (control group, low BTXA group (1 U/10(6) Cells), and high BTXA group (2.5 U/ 10(6)Cells)). Growth condition of fibroblasts was observed at 1 , 4, 7 day after BTXA treated. Changes of alpha-SMA and myosin-II in fibroblasts were detected by Western blot.
RESULTSFibroblasts grew well in control group. The proliferation was decreased 4 days later in BTXA groups. Lots of apoptotic cells were seen in high BTXA group at 7th day. Proteins of alpha-SMA and myosin-II in fibroblasts were statistically different between BTXA group and control groups at 4th day (P < 0.05). The expression of alpha-SMA and myosin-II in low BTXA group was higher than that in high BTXA group at 7th day (P < 0.05).
CONCLUSIONSBTXA could induce the apoptosis of fibroblasts and decrease the expression of alpha-SMA and myosin-II in fibroblasts. The inhibitory effect was strengthened with BTXA concentration increase within a certain range.
Actins ; metabolism ; Botulinum Toxins, Type A ; pharmacology ; Cicatrix ; Fibroblasts ; drug effects ; metabolism ; Humans ; Muscle, Smooth ; metabolism ; Myosin Type II ; metabolism ; Random Allocation
6.Implication of phosphorylation of the myosin II regulatory light chain in insulin-stimulated GLUT4 translocation in 3T3-F442A adipocytes.
Young Ok CHOI ; Hee Jeong RYU ; Hye Rim KIM ; Young Sook SONG ; Cheonghwan KIM ; Wan LEE ; Han CHOE ; Chae Hun LEEM ; Yeon Jin JANG
Experimental & Molecular Medicine 2006;38(2):180-189
In adipocytes, insulin stimulates glucose transport primarily by promoting the translocation of GLUT4 to the plasma membrane. Requirements for Ca2+/ calmodulin during insulin-stimulated GLUT4 translocation have been demonstrated; however, the mechanism of action of Ca2+ in this process is unknown. Recently, myosin II, whose function in non-muscle cells is primarily regulated by phosphorylation of its regulatory light chain by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK), was implicated in insulin-stimulated GLUT4 translocation. The present studies in 3T3- F442A adipocytes demonstrate the novel finding that insulin significantly increases phosphorylation of the myosin II RLC in a Ca2+-dependent manner. In addition, ML-7, a selective inhibitor of MLCK, as well as inhibitors of myosin II, such as blebbistatin and 2,3-butanedione monoxime, block insulin- stimulated GLUT4 translocation and subsequent glucose transport. Our studies suggest that MLCK may be a regulatory target of Ca2+/calmodulin and may play an important role in insulin-stimulated glucose transport in adipocytes.
Protein Transport/drug effects
;
Phosphorylation
;
Naphthalenes/pharmacology
;
Myosin-Light-Chain Kinase/antagonists & inhibitors/*metabolism
;
Myosin Type II/*metabolism
;
Mice
;
Insulin/*pharmacology
;
Glucose Transporter Type 4/*metabolism
;
Enzyme Inhibitors/pharmacology
;
Dose-Response Relationship, Drug
;
Calmodulin/antagonists & inhibitors/physiology
;
Azepines/pharmacology
;
Animals
;
Adipocytes/cytology/*drug effects/metabolism
;
3T3 Cells
7.Activation of small Rho GTPases by blebbistatin in PC12 cells.
Eung Gook KIM ; Eun Young SHIN
Journal of Biomedical Research 2013;14(2):60-64
Neuronal differentiation is a complex biological process accompanying cytoskeletal reorganization, including neurite outgrowth and growth cone formation. Therefore, neuronal differentiation is critically regulated by actin-related signaling proteins, such as small Rho GTPases, guanine nucleotide exchange factors (GEFs), and myosins. This study will demonstrate the change in activity of three small Rho GTPases, Rac, Cdc42, and Rho A, by treatment with blebbistatin (BBS), a specific inhibitor for myosin, during bFGF-induced neurite outgrowth in PC12 cells. Treatment with BBS induced morphological changes in growth cones and neurites during differentiation. A marked increase in protrusion and filopodia structures in growth cones, the shaft of neuritis, and cell membranes was observed in the cells treated with BBS. Activity of Rho GTPases showed the alterations in response to BBS. Activities of both Rac and Rho A were inhibited by BBS in a time-dependent manner. By contrast, Cdc42 activity was not changed by BBS. These results suggest that inactivation of myosin II by BBS induced morphological changes in neurites and growth cones and distinct regulation of three Rho GTPases during differentiation of PC12 cells.
Animals
;
Biological Processes
;
Cell Membrane
;
Growth Cones
;
Guanine Nucleotide Exchange Factors
;
Heterocyclic Compounds with 4 or More Rings
;
Myosin Type II
;
Myosins
;
Neurites
;
Neuritis
;
Neurons
;
PC12 Cells*
;
Proteins
;
Pseudopodia
;
rho GTP-Binding Proteins*
8.Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic beta-cells.
Young Eun HAN ; Ajin LIM ; Sun Hyun PARK ; Sunghoe CHANG ; Suk Ho LEE ; Won Kyung HO
Experimental & Molecular Medicine 2015;47(10):e190-
AMP-activated protein kinase (AMPK) is a metabolic sensor activated during metabolic stress and it regulates various enzymes and cellular processes to maintain metabolic homeostasis. We previously reported that activation of AMPK by glucose deprivation (GD) and leptin increases KATP currents by increasing the surface levels of KATP channel proteins in pancreatic beta-cells. Here, we show that the signaling mechanisms that mediate actin cytoskeleton remodeling are closely associated with AMPK-induced KATP channel trafficking. Using F-actin staining with Alexa 633-conjugated phalloidin, we observed that dense cortical actin filaments present in INS-1 cells cultured in 11 mM glucose were disrupted by GD or leptin treatment. These changes were blocked by inhibiting AMPK using compound C or siAMPK and mimicked by activating AMPK using AICAR, indicating that cytoskeletal remodeling induced by GD or leptin was mediated by AMPK signaling. AMPK activation led to the activation of Rac GTPase and the phosphorylation of myosin regulatory light chain (MRLC). AMPK-dependent actin remodeling induced by GD or leptin was abolished by the inhibition of Rac with a Rac inhibitor (NSC23766), siRac1 or siRac2, and by inhibition of myosin II with a myosin ATPase inhibitor (blebbistatin). Immunocytochemistry, surface biotinylation and electrophysiological analyses of KATP channel activity and membrane potentials revealed that AMPK-dependent KATP channel trafficking to the plasma membrane was also inhibited by NSC23766 or blebbistatin. Taken together, these results indicate that AMPK/Rac-dependent cytoskeletal remodeling associated with myosin II motor function promotes the translocation of KATP channels to the plasma membrane in pancreatic beta-cells.
AMP-Activated Protein Kinases/metabolism
;
Actins/*metabolism
;
Animals
;
Cell Line
;
Glucose/metabolism
;
Insulin-Secreting Cells/*metabolism
;
KATP Channels/*metabolism
;
Leptin/metabolism
;
Myosin Type II/*metabolism
;
Phosphorylation
;
Rats
;
*Signal Transduction
;
rac GTP-Binding Proteins/*metabolism
9.Effects of microRNA-1 on negatively regulating L-type calcium channel beta2 subunit gene expression during cardiac hypertrophy.
Yang WU ; Peng GENG ; Yu-Qin WANG ; Yan LIU
Chinese Journal of Applied Physiology 2012;28(4):304-308
OBJECTIVETo investigate the negative regulation of microRNA-1 (miR-1) on L-type calcium channel beta2 subunit (Cavbeta 2) during cardiomyocyte hypertrophy and its mechanism.
METHODSCardiomyocyte hypertrophy was induced by isoproterenol (ISO). The cell surface area was measured by image analysis system (HJ2000). The targets of miR-1 were predicted by online database microCosm. The 3' untranslated region sequence of Cavbeta 2 was cloned into luciferase reporter vector and then transiently transfected into HEK293 cells. The luciferase activities of samples were measured to verify the expression of luciferase reporter vector. The expression of atrial natriuretic peptide (ANP), beta-myosin heavy chain (beta-MHC), miR-1 and the Cavbeta 2 mRNA were detected by qRT-PCR. The protein expression of Cavbeta 2 was detected by Western blot. The level of miR-1 was up-regulated by miR-1 mimic transfection and the expression level of Cavbeta 2 was down-regulated by RNAi, then effects of which on cardiomyocyte hypertrophy were investigated.
RESULTS(1) The expression of miR-1 was significantly reduced in cardiomyocyte hypertrophy. Upregulating the miR-1 level could suppress the increase of cell surface area, the expression of ANP and beta-MHC mRNA (P < 0.05). (2) Cavbeta 2 was the one of potential targets of miR-1 by prediction using online database microCosm. The luciferase activities of HEK293 cells with the plasmid containing miR-1 and wide type Cavbeta 3' UTR sequence was significantly decreased when compared with that of control group (P < 0.01). Up-regulation of the miR-1 level could suppress the protein expression of Cavbeta 2. (3) The expression of Cavbeta 2 was significantly increased in cardiomyocyte hypertrophy induced by ISO. Downregulation of Cavbeta by RNAi could markedly inhibit the increase of cell surface area, the expression of ANP and beta-MHC mRNA.
CONCLUSIONCavbeta2 is one of potential targets of miR-1 by bioinformatics prediction. The experiment data confirms that Cavbeta2 is truly the target of miR-1. MiR-1 can negatively regulate the expression of Cavbeta 2, resulting in the decrease of intracellular Ca2+ content and the attenuation of cardiomyocyte hypertrophy.
Animals ; Atrial Natriuretic Factor ; metabolism ; Calcium Channels, L-Type ; genetics ; Cardiomegaly ; genetics ; Gene Expression Regulation ; HEK293 Cells ; Humans ; MicroRNAs ; genetics ; Rats ; Rats, Sprague-Dawley ; Transfection ; Ventricular Myosins ; metabolism
10.Effects of non-muscle myosin Ⅱ silenced bone marrow-derived mesenchymal stem cells transplantation on lung extracellular matrix in rats after endotoxin/lipopolysaccharide-induced acute lung injury.
Xi YIN ; Wan Fang ZHOU ; Wen Jia HOU ; Ming Zhi FAN ; Guo Sheng WU ; Xiao Bin LIU ; Qi Min MA ; Yu Song WANG ; Feng ZHU
Chinese Journal of Burns 2022;38(5):422-433
Objective: To investigate the effects of non-muscle myosin Ⅱ (NMⅡ) gene silenced bone marrow-derived mesenchymal stem cells (BMMSCs) on pulmonary extracellular matrix (ECM) and fibrosis in rats with acute lung injury (ALI) induced by endotoxin/lipopolysaccharide (LPS). Methods: The experimental research methods were adopted. Cells from femur and tibial bone marrow cavity of four one-week-old male Sprague-Dawley rats were identified as BMMSCs by flow cytometry, and the third passage of BMMSCs were used in the following experiments. The cells were divided into NMⅡ silenced group transfected with pHBLV-U6-ZsGreen-Puro plasmid containing small interference RNA sequence of NMⅡ gene, vector group transfected with empty plasmid, and blank control group without any treatment, and the protein expression of NMⅡ at 72 h after intervention was detected by Western blotting (n=3). The morphology of cells was observed by an inverted phase contrast microscope and cells labeled with chloromethylbenzoine (CM-DiⅠ) in vitro were observed by an inverted fluorescence microscope. Twenty 4-week-old male Sprague-Dawley rats were divided into blank control group, ALI alone group, ALI+BMMSC group, and ALI+NMⅡ silenced BMMSC group according to the random number table, with 5 rats in each group. Rats in blank control group were not treated, and rats in the other 3 groups were given LPS to induce ALI. Immediately after modeling, rats in ALI alone group were injected with 1 mL normal saline via tail vein, rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group were injected with 1×107/mL BMMSCs and NMⅡ gene silenced BMMSCs of 1 mL labelled with CM-DiⅠ via tail vein, and rats in blank control group were injected with 1 mL normal saline via tail vein at the same time point, respectively. At 24 h after intervention, the lung tissue was collected to observe intrapulmonary homing of the BMMSCs by an inverted fluorescence microscope. Lung tissue was collected at 24 h, in 1 week, and in 2 weeks after intervention to observe pulmonary inflammation by hematoxylin eosin staining and to observe pulmonary fibrosis by Masson staining, and the pulmonary fibrosis in 2 weeks after intervention was scored by modified Ashcroft score (n=5). The content of α-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and MMP-9 was detected by immunohistochemistry in 2 weeks after intervention (n=3), the activity of superoxide dismutase (SOD), malondialdehyde, myeloperoxidase (MPO) was detected by enzyme-linked immunosorbent assay at 24 h after intervention (n=3), and the protein expressions of CD11b and epidermal growth factor like module containing mucin like hormone receptor 1 (EMR1) in 1 week after intervention were detected by immunofluorescence staining (n=3). Data were statistically analyzed with one-way analysis of variance, Bonferroni method, and Kruskal-Wallis H test. Results: At 72 h after intervention, the NMⅡprotein expression of cells in NMⅡ silenced group was significantly lower than those in blank control group and vector group (with P values <0.01). BMMSCs were in long spindle shape and grew in cluster shaped like vortexes, which were labelled with CM-DiⅠ successfully in vitro. At 24 h after intervention, cell homing in lung of rats in ALI+NMⅡ silenced BMMSC group was more pronounced than that in ALI+BMMSC group, while no CM-DiⅠ-labelled BMMSCs were observed in lung of rats in blank control group and ALI alone group. There was no obvious inflammatory cell infiltration in lung tissue of rats in blank control group at all time points, while inflammatory cell infiltration in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group was significantly less than that in ALI alone group at 24 h after intervention, and alveolar wall turned to be thinner and a small amount of congestion in local lung tissue appeared in rats of the two groups in 1 week and 2 weeks after intervention. In 1 week and 2 weeks after intervention, collagen fiber deposition in lung tissue of rats in ALI alone group, ALI+BMMSC group, and ALI+NMⅡ silenced BMMSC group was significantly aggravated compared with that in blank control group, while collagen fiber deposition in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group was significantly improved compared with that in ALI alone group. In 2 weeks after intervention, modified Ashcroft scores for pulmonary fibrosis of rats in ALI alone group, ALI+BMMSC group, and ALI+NMⅡ silenced BMMSC group were 2.36±0.22, 1.62±0.16, 1.06±0.26, respectively, significantly higher than 0.30±0.21 in blank control group (P<0.01). Modified Ashcroft scores for pulmonary fibrosis of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group were significantly lower than that in ALI alone group (P<0.01), and modified Ashcroft score for pulmonary fibrosis of rats in ALI+NMⅡ silenced BMMSC group was significantly lower than that in ALI+BMMSC group (P<0.01). In 2 weeks after intervention, the content of α-SMA in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group were significantly decreased compared with that in ALI alone group (P<0.05 or P<0.01). The content of MMP-2 in lung tissue of rats in the 4 groups was similar (P>0.05). The content of MMP-9 in lung tissue of rats in ALI alone group was significantly increased compared with that in blank control group (P<0.01), and the content of MMP-9 in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group was significantly decreased compared with that in ALI alone group (P<0.01). At 24 h after intervention, the activity of malondialdehyde, SOD, and MPO in lung tissue of rats in ALI alone group, ALI+BMMSC group, and ALI+NMⅡ silenced BMMSC group were significantly increased compared with that in blank control group (P<0.01), the activity of malondialdehyde in lung tissue of rats in ALI+NMⅡ silenced BMMSC group and the activity of SOD in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group were significantly increased compared with that in ALI alone group (P<0.05 or P<0.01), and the activity of SOD in lung tissue of rats in ALI+NMⅡ silenced BMMSC group was significantly decreased compared with that in ALI+BMMSC group (P<0.01). The activity of MPO in lung tissue of rats in ALI+BMMSC group and ALI+NMⅡ silenced BMMSC group was significantly decreased compared with that in ALI alone group (P<0.01), and the activity of MPO in lung tissue of rats in ALI+NMⅡ silenced BMMSC group was significantly decreased compared with that in ALI+BMMSC group (P<0.01). In 1 week after intervention, the protein expression of CD11b in lung tissue of rats in ALI+NMⅡ silenced BMMSC group was significantly increased compared with those in the other three groups (P<0.05 or P<0.01), while the protein expressions of EMR1 in lung tissue of rats in the four groups were similar (P>0.05). Conclusions: Transplantation of NMⅡ gene silenced BMMSCs can significantly improve the activity of ECM components in the lung tissue in LPS-induced ALI rats, remodel its integrity, and enhance its antioxidant capacity, and alleviate lung injury and pulmonary fibrosis.
Acute Lung Injury/therapy*
;
Animals
;
Bone Marrow
;
Collagen/metabolism*
;
Endotoxins
;
Extracellular Matrix
;
Lipopolysaccharides/adverse effects*
;
Lung
;
Male
;
Malondialdehyde/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Mesenchymal Stem Cells/metabolism*
;
Myosin Type II/metabolism*
;
Pulmonary Fibrosis
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution/metabolism*
;
Superoxide Dismutase/metabolism*