1.Capacitative Ca²⁺ entry is involved in ACh-induced distal colon smooth muscle contraction in rats.
De-Hu KONG ; Hua ZHOU ; Jie SONG ; Dao-Ping KE ; Jin-Lan HU ; Zhong-Wen LI ; Rong MA
Acta Physiologica Sinica 2006;58(2):149-156
Contraction of smooth muscle cells is triggered by an increase in cytosolic Ca(2+) upon agonist stimulation. Ca(2+) influx across the plasma membrane constitutes a major component of the agonist-induced response in smooth muscle cells. Traditionally, voltage-operated Ca(2+) channel (VOCC) is considered as the channel mediating the Ca(2+) entry. However, this view has been challenged by recent discoveries, which demonstrated that other types of ion channels, such as store-operated and/or receptor-operated Ca(2+) channels (SOCC and/or ROCC), also participate in Ca(2+) response induced by agonists in smooth muscle cells. SOCC is defined as the channel activated in response to the depletion of the internal Ca(2+) stores, an event secondary to G protein coupled receptor or receptor tyrosine kinase stimulation. The Ca(2+) flow mediated by SOCC is termed as capacitative Ca(2+) entry (CCE). Previous study from other group has demonstrated that VOCC played a predominant role in ACh-induced contraction of distal colon smooth muscle in guinea pig. However, whether SOCC participates in the agonist-induced contractile response in this particular tissue is unknown. The present study was performed to investigate the role of CCE in ACh-induced mechanical activity of distal colon smooth muscle in rats. The contractile function of the smooth muscle was assessed by measuring isometric force of isolated rat distal colon rings. We showed that both high extracellular K(+) (40 mmol/L) and ACh (5 mumol/L) evoked striking contraction of the smooth muscle. The contractile responses were almost abolished by removal of extracellular Ca(2+) with ethylene glycol-bis(2-aminoethylether)-N,N,N',N' tetraacetic acid (EGTA), suggesting a critical contribution of extracellular source of Ca(2+) to the contraction. Verapamil (5 mumol/L), an L-type VOCC blocker, significantly attenuated, but didn't completely eliminate the high K(+)- and ACh-induced contraction (74% and 41% for high K(+) and ACh, respectively), indicating that additional channels might be involved in the contractile mechanism. Furthermore, ACh only induced transient contractions in the absence of extracellular Ca(2+). Readmission of Ca(2+) into the extracellular compartment resulted in a significant and sustained increase in the tension of the smooth muscle. This response was not affected by verapamil (5 mumol/L) and Cd(2+) (5 mumol/L), both of which efficiently block VOCC at the doses. However, La(3+), a known inhibitor of SOCC, significantly suppressed the Ca(2+) readdition-induced contraction in a dose-dependent manner. On the basis of these results, we conclude that contraction of smooth muscle in the distal colon is regulated by multiple Ca(2+) channels. In addition to VOCC-mediated Ca(2+) influx, SOCC-mediated CCE participates in agonist-induced contractile response of distal colon smooth muscle in rats.
Acetylcholine
;
physiology
;
Animals
;
Calcium
;
metabolism
;
Calcium Channels
;
physiology
;
Colon
;
physiology
;
Female
;
Male
;
Muscle Contraction
;
physiology
;
Muscle, Smooth
;
physiology
;
Myocytes, Smooth Muscle
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Verapamil
;
pharmacology
4.Multiple regulatory effects of angiotensin II on the large-conductance Ca- and voltage-activated potassium channel in vascular smooth muscle cells.
Xiao-Chen YIN ; Su-Li ZHANG ; Hui-Rong LIU
Acta Physiologica Sinica 2019;71(2):187-195
Renin-angiotensin system (RAS) is involved in the regulation of vascular smooth muscle cell (VSMC) tension. Angiotensin II (Ang II) as the main effector molecule of RAS can increase the intracellular Ca concentration and cause VSMCs contraction by activating angiotensin II type 1 receptor (AT1R). The large-conductance Ca- and voltage-activated potassium (BK) channel is an essential potassium channel in VSMCs, playing an important role in maintaining membrane potential and intracellular potassium-calcium balance. The BK channel in VSMCs mainly consists of α and β1 subunits. Functional BKα subunits contain voltage-sensors and Ca binding sites. Hence, increase in the membrane potential or intracellular Ca concentration can trigger the opening of the BK channel by mediating transient K outward current in a negative regulatory manner. However, increasing evidence has shown that although Ang II can raise the intracellular Ca concentration, it also inhibits the expression and function of the BK channel by activating the PKC pathway, internalizing AT1R-BKα heterodimer, or dissociating α and β1 subunits. Under some specific conditions, Ang II can also activate the BK channel, but the underlying mechanism remains unknown. In this review, we summarize the potential mechanisms underlying the inhibitory or activating effect of Ang II on the BK channel, hoping that it could provide a theoretical basis for improving intracellular ion imbalance.
Angiotensin II
;
physiology
;
Calcium
;
physiology
;
Humans
;
Large-Conductance Calcium-Activated Potassium Channels
;
physiology
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
physiology
;
Renin-Angiotensin System
5.The characteristics of resting membrane potential on smooth muscle cells and endothelial cells in guinea pigs cochlea spiral artery.
Li LI ; Ke-Tao MA ; Lei ZHAO ; Wen-Yan SHI ; Xin-Zhi LI ; Zhong-Shuang ZHANG ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2012;28(2):128-132
OBJECTIVEA variety of inner ear disease is related to microcirculation disturbance of inner ear, but smooth muscle cells (SMC) and endothelial cells (EC) of the spiral modiolar artery (SMA), which is the main blood supply to the inner ear, physiological feature is not very clear.
METHODSIn this study, two-intracellular microelectrode recording technique and cell staining techniques to study the SMC and EC resting membrane potential characteristics and communication links between cells of SMA.
RESULTSStudy found that SMC and EC have high and low resting membrane potential state, two state of the resting membrane potential of cells to ACh and high K+ response is completely different. The different types of cells, EC-EC, SMC-SMC and SMC-EC, can simultaneously record by two-microelectrode, two cell resting membrane potential can also be a double-high RP, double-low RP and one high- and one low- RP. Experiment recorded in one high- and one low- RP are the SMC-EC types, and ECs initial membrane potential are high potential, SMCs membrane potential are low initial potential. The double-high and double-low RP can be SMC-SMC or EC-EC or SMC-EC types.
CONCLUSIONThe results show that SMC and EC in the 0.3 - 0.5 mm range, similar type of cells have very good communication, can function together to maintain good and consistent, heterogeneous cell performance is more different.
Animals ; Arteries ; cytology ; Cochlea ; blood supply ; physiology ; Endothelial Cells ; physiology ; Guinea Pigs ; Membrane Potentials ; physiology ; Myocytes, Smooth Muscle ; physiology
6.The technique of simultaneous recording calcium transients and spontaneous transient outward currents in arterial smooth muscle cells.
Peng-Yun LI ; Xiao-Rong ZENG ; Ming LEI ; Zhi-Fei LIU ; Yan YANG
Acta Physiologica Sinica 2010;62(3):269-274
Laser scanning confocal microscopy (LSCM) and whole-cell perforated patch-clamp techniques were combined to study simultaneously the changes of intracellular signal molecules and membrane currents. Intracellular calcium transients and spontaneous transient outward currents (STOCs) were recorded simultaneously in freshly isolated mouse cerebral artery smooth muscle cells. The cells loaded with fluo-4/AM were scanned with the confocal line-scan mode. Triggering voltage pulses derived from an EPC-10 patch clamp amplifier triggered the confocal line scan. The results showed that STOCs and intracellular calcium transients could be simultaneously recorded in the same cell. This technique will be useful in studies of diseases caused by impairments of intracellular Ca(2+) signaling and related ionic channel activities, or vice versa.
Animals
;
Calcium Signaling
;
Cerebral Arteries
;
cytology
;
Mice
;
Myocytes, Smooth Muscle
;
physiology
;
Patch-Clamp Techniques
7.Mechanisms responsible for pulmonary hypertension.
Mainali PRABHA ; Hong-fang JIN ; Yue TIAN ; Chao-shu TANG ; Jun-bao DU
Chinese Medical Journal 2008;121(24):2604-2609
8.Recent progress in smooth muscle autophagy of vascular diseases.
Shi TAI ; Qin ZHOU ; Yanan GUO ; Shenghua ZHOU
Journal of Central South University(Medical Sciences) 2018;43(8):920-928
Autophagy plays a crucial role in maintaining normal structure and vascular function in vivo. When stress-relevant stimuli are involved, the increases of autophagy can protect vascular smooth muscle cells, promote cell survival, and phenotype transformation, as well as reduce calcification. On the contrary, the decrease of autophagy can accelerate cell senescence, resulting in structural changes and dysfunction of vasomotor and vasodilation. However, excessive activation of autophagy can induce the damage of the healthy protein and essential organelles, and even lead to autophagic cell death, accelerating the progression of vascular disease. Thus, the precise targeting of autophagy opens a novel way for treatment of vascular diseases.
Autophagy
;
physiology
;
Cell Survival
;
Cellular Senescence
;
Disease Progression
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
physiology
;
Vascular Diseases
;
pathology
;
therapy
10.Comparison of membrane current of vascular smooth muscle cells in brain artery of spontaneously hypertensive rats and Wistar rats.
Lei ZHAO ; Yuan-Yuan SHANG ; Jun-Qiang SI ; Xin-Zhi LI ; Li LI ; Zhong-Shuang ZHANG ; Ke-Tao MA
Chinese Journal of Applied Physiology 2013;29(1):25-28
OBJECTIVETo investigate the difference in membrane current of vascular smooth muscle cells (VSMCs) in brain artery (BA) of spontaneously hypertensive rats (SHR) and Wistar rats.
METHODSWe compared the properties of spontaneous transient outward K+ currents (STOCs), the density and composition of current of VSMCs in BA of SHR and Wistar rats by whole-cell patch clamp technique.
RESULTS(1) When the command voltage was 0, + 20, + 40 and + 60 mV respectively, the current densities of VSMCs in BA of SHR and Wistar rats were significant different (P < 0.01). (2) The whole-cell current of VSMCs was partly inhibited by 1 mmol/L4-AP (voltage-gated K+ channel blocker) or 1 mmol/L TEA (big conductance Ca(2+)-activated K+ channel blocker) respectively. (3) The frequency and amplitude of STOCs in SHR were faster and bigger than those in Wistar rats. 1 mmol/L TEA almostly inhibited the STOCs, but not by 4-AP.
CONCLUSIONThese results suggest that the current densities of VSMCs in BA of SHR and Wistar rats are significant different, the outward current of VSMCs in BA of SHR and Wistar rats are composed by Kv and BK(Ca). SHR express more STOCs mediated by BK(Ca), than Wistar rats.
Animals ; Cerebral Arteries ; cytology ; physiology ; Membrane Potentials ; physiology ; Muscle, Smooth, Vascular ; cytology ; physiology ; Myocytes, Smooth Muscle ; physiology ; Patch-Clamp Techniques ; Potassium Channels, Calcium-Activated ; physiology ; Potassium Channels, Voltage-Gated ; physiology ; Rats ; Rats, Inbred SHR ; Rats, Wistar