1.Effects of aconitine on Ca2+ oscillation in cultured myocytes of neonatal rats.
Yan, LIU ; Shiwei, ZHANG ; Man, LIANG ; Qian, LIU ; Liang, LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2008;28(5):499-503
In order to investigate the effects of aconitine on [Ca2+] oscillation patterns in cultured myocytes of neonatal rats, fluorescent Ca2+ indicator Fluo-4 NW and laser scanning confocal microscope (LSCM) were used to detect the real-time changes of [Ca2+] oscillation patterns in the cultured myocytes before and after aconitine (1.0 micromol/L) incubation or antiarrhythmic peptide (AAP) and aconitine co-incubation. The results showed under control conditions, [Ca2+] oscillations were irregular but relatively stable, occasionally accompanied by small calcium sparks. After incubation of the cultures with aconitine, high frequency [Ca2+] oscillations emerged in both nuclear and cytoplasmic regions, whereas typical calcium sparks disappeared and the average [Ca2+] in the cytoplasm of the cardiomyocyte did not change significantly. In AAP-treated cultures, intracellular [Ca2+] oscillation also changed, with periodic frequency, increased amplitudes and prolonged duration of calcium sparks. These patterns were not altered significantly by subsequent aconitine incubation. The basal value of [Ca2+] in nuclear region was higher than that in the cytoplasmic region. In the presence or absence of drugs, the [Ca2+] oscillated synchronously in both the nuclear and cytoplasmic regions of the same cardiomyocyte. It was concluded that although oscillating strenuously at high frequency, the average [Ca2+] in the cytoplasm of cardiomyocyte did not change significantly after aconitine incubation, compared to the controls. The observations indicate that aconitine induces the changes in [Ca2+] oscillation frequency other than the Ca2+ overload.
Aconitine/*pharmacology
;
Animals, Newborn
;
Calcium Signaling/*drug effects
;
Cells, Cultured
;
Myocytes, Cardiac/cytology
;
Myocytes, Cardiac/*metabolism
;
Rats, Sprague-Dawley
2.Effect of metallothionein on myocyte apoptosis and energy supply of isolated rabbit heart muscle during perfusion with ropivacaine.
Yao-min ZHU ; Zu-yi YUAN ; Xiang LIU ; Gui-xia JING
Journal of Southern Medical University 2011;31(8):1425-1427
OBJECTIVE[corrected] To assess the effects of metallothionein on myocyte apoptosis and energy supply of isolated rabbit heart muscle during perfusion with ropivacaine..
METHODSSixty New Zealand white male rabbits were randomized into 3 equal groups. In group I, the rabbits received a intreaperitioneal injection of distilled water 24 h before isolation of the heart with perfusion by Langendoff model; in group II, distilled water was injected intreaperitioneally, and 24 h later the heart was isolated and perfused with Langendoff model and ropivacaine; in group III, 3.6% ZnSO(4) was injected intreaperitioneally and the isolated heart was perfused with Langendoff model and ropivacaine. The myocardial metallothionein content, myocyte apoptosis, and myocardial ATP, ADP and AMP content were detected.
RESULTSThe myocardial metallothionein content was significantly higher in group III than in the other two groups; the percent of myocyte apoptosis was the highest in group II, and was significantly higher in group III than in group I. The myocardial content of ATP was the highest in group I, and was significantly higher in group III than in group II.
CONCLUSIONMetallothionein can significantly inhibit myocyte apoptosis and alleviate energy supply disorder induced by ropivacaine.
Amides ; pharmacology ; Animals ; Apoptosis ; drug effects ; Energy Metabolism ; drug effects ; In Vitro Techniques ; Male ; Metallothionein ; pharmacology ; Myocardium ; cytology ; metabolism ; Myocytes, Cardiac ; cytology ; metabolism ; Perfusion ; Rabbits
3.Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts.
Kyuho JEONG ; Hayeong KWON ; Chanhee MIN ; Yunbae PAK
Experimental & Molecular Medicine 2009;41(4):226-235
We investigated the effect of phenylephrine (PE)- and isoproterenol (ISO)-induced cardiac hypertrophy on subcellular localization and expression of caveolin-3 and STAT3 in H9c2 cardiomyoblast cells. Caveolin-3 localization to plasma membrane was attenuated and localization of caveolin-3 to caveolae in the plasma membrane was 24.3% reduced by the catecholamine-induced hypertrophy. STAT3 and phospho-STAT3 were up-regulated but verapamil and cyclosporin A synergistically decreased the STAT3 and phospho-STAT3 levels in PE- and ISO-induced hypertrophic cells. Both expression and activation of STAT3 were increased in the nucleus by the hypertrophy. Immunofluorescence analysis revealed that the catecholamine-induced hypertrophy promoted nuclear localization of pY705-STAT3. Of interest, phosphorylation of pS727-STAT3 in mitochondria was significantly reduced by catecholamine-induced hypertrophy. In addition, mitochondrial complexes II and III were greatly down-regulated in the hypertrophic cells. Our data suggest that the alterations in nuclear and mitochondrial activation of STAT3 and caveolae localization of caveolin-3 are related to the development of the catecholamine-induced cardiac hypertrophy.
Animals
;
Catecholamines/*pharmacology
;
Caveolae/*metabolism
;
Caveolin 3/*metabolism
;
Cell Line
;
Hypertrophy/metabolism
;
Mitochondria/*metabolism
;
Myocardium/cytology/*pathology
;
Myocytes, Cardiac/cytology/*drug effects/metabolism
;
Rats
;
STAT3 Transcription Factor/*metabolism
4.Adenosine reduces intracellular free calcium concentration in guinea pig ventricular myocytes.
Hui-Jie MA ; Mei DONG ; En-Sheng JI ; Chuan WANG ; Jing-Xiang YIN ; Qing-Shan WANG
Chinese Journal of Applied Physiology 2006;22(1):58-62
AIMTo observe the effects of adenosine on intracellular calcium concentration ([Ca2+]i) level in guinea pig ventricular myocytes and to define the possible mechanisms involved.
METHODSThe effects of adenosine on [Ca2+]i were investigated in guinea pig ventricular myocytes. [Ca2+]i was detected by laser confocal microscopy and represented by relative fluorescent intensity ((FI-FI0)/FI0, %, FIo: control, FI: administration of drugs).
RESULTS(1) Adenosine (10, 50, 100 micromol/L) reduced [Ca2+]i of ventricular myocytes in both normal Tyrode's solution and Ca(2+) -free Tyrode's solution in a concentration-dependent manner. (2) Tyrode's solution containing 30 mmol/L KCl (high K+ Tyrode's solution) induced [Ca2+]i elevation in ventricular myocytes, while adenosine (10, 50, 100 micromol/L) markedly inhibited the increase in [Ca2+]i induced by KCl. (3) Pretreatment with DPCPX (1 micromol/L) significantly reduced the effects of adenosine (100 micromol/L) in high K+ Tyrode's solution. The effects of adenosine (100 micromol/L) on [Ca2+]i in high K+ Tyrode's solution were also partially attenuated by pretreatment with L-NAME (1 mmol/L). (4) Adenosine (100 micromol/L) markedly inhibited the low concentration of ryanodine-induced [Ca2+]i increase in Ca(2+) -free Tyrode's solution. (5) When the propagating waves of elevated [Ca2+]i (Ca2+ waves) were produced by increasing extracellular Ca2+ concentration from 1 mmol/L to 10 mmol/L, adenosine (100 micromol/L) could block the propagating waves of elevated [Ca2+]i, reduce the frequency and duration of propagating waves, and reduce [Ca2+]i as well.
CONCLUSIONAdenosine may reduce the [Ca2+]i in isolated guinea pig ventricular myocytes via inhibiting Ca2+ influx and alleviating Ca2+ release from sarcoplasmic reticulum(SR). The reduction of Ca2+ influx might be due to the inhibition of voltage-dependent Ca2+ channel via adenosine A1 receptor, and NO might be involved in this process.
Adenosine ; pharmacology ; Animals ; Calcium ; metabolism ; Cells, Cultured ; Guinea Pigs ; Heart Ventricles ; cytology ; Myocytes, Cardiac ; drug effects ; metabolism
5.Effect of agmatine on intracellular free calcium concentration in isolated rat ventricular myocytes.
Qing LI ; Zhong-Lin SHANG ; Jing-Xiang YIN ; Yi-He WANG ; Rui-Rong HE
Acta Physiologica Sinica 2002;54(6):467-472
The present study was to investigate the effects of agmatine (Agm) on free intracellular calcium concentration ([Ca(2+)]( i )) of isolated rat ventricular myocytes. [Ca(2+)]( i ) was measured by confocal microscopy in single rat ventricular myocytes which were dissociated by enzymatic dissociation method and loaded with Fluo 3-AM. The changes in [Ca(2+)]( i ) were represented by fluorescence intensity (FI) or relative fluorescence intensity (F/F(0)%). The results showed that the control level of FI value of single rat ventricular myocytes was 128.8+/-13.8 and 119.6+/-13.6 in the presence of normal Tyrode's solution containing Ca(2+) 1.0 mmol/L and Ca(2+)-free Tyrode's solution, respectively. There was no difference between these two groups (P>0.05). Agm 0.1, 1, and 10 mmol/L significantly reduced the [Ca(2+)]( i ) in both extracellular solutions in a concentration-dependent manner. The similar effect of Agm on [Ca(2+)]( i ) was also observed in the presence of EGTA 3 mmol/L. KCl 60 mmol/L, PE 30 micromol/L, and Bay-K-8644 10 micromol/L, all these substances induced [Ca(2+)]( i ) elevations in ventricular myocytes. Agm (0.1, 1, and 10 mmol/L) markedly inhibited the increase in [Ca(2+)]( i ) induced by KCl, phenylephrine (PE), and Bay-K-8644. When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, 1 mmol/L Agm could block the propagating waves of elevated [Ca(2+)]( i ), and reduce the velocity and duration of propagating waves. These results suggest that Agm possesses an inhibitory effects on [Ca(2+)]( i ) via blocking voltage-dependent Ca(2+) channel, and possibly by alleviating calcium release from SR in single isolated rat ventricular myocytes.
Agmatine
;
pharmacology
;
Animals
;
Calcium
;
metabolism
;
Calcium Channels
;
drug effects
;
Cells, Cultured
;
Female
;
Heart Ventricles
;
cytology
;
Male
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
6.The effect of pioglitazone on apoptotic cardiomyocytes for ischemia reperfusion.
Ze-ling CAO ; Ping YE ; Chao-liang LONG ; Kai CHEN ; Xiao-wei LI ; Hai WANG
Chinese Journal of Cardiology 2005;33(7):648-652
OBJECTIVEThis study was to investigate the effect of pioglitazone on apoptotic cardiomyocytes with the model of ischemia-reperfusion at rat heart in vivo.
METHODSSprague-Dawley rats were randomly divided into two groups. One was 30 min reperfusion group, which was subdivided into sham (n = 5), model (vehicle, n = 6) and pioglitazone 3 mg/kg (n = 7) with 30 min ischemia followed by 30 min reperfusion to detect the area of myocardial infarction (MI). Another was 2 h reperfusion group, which was further subdivided into sham (n = 5), model (vehicle, n = 6), and pioglitazone 0.3 mg/kg (n = 6), 1 mg/kg (n = 7) and 3 mg/kg (n = 6). Apart from the sham, pioglitazone and vehicle were administered intravenously 30 min before occlusion. Then hearts were excised, paraffined and cut into 4 microm thick. Immunohistochemistry, in situ hybridization, TUNEL and DNA agarose gel electrophoresis were performed to detect the expression of Bax, Bcl-2, Caspase-3 and PPARgamma protein and PPARgamma mRNA.
RESULTS(1) Compared with model, nec/aar of pioglitazone decreased by 28% (P < 0.01). The nec/lv ratio reduced by 32% (P < 0.01). (2) In a dose-dependent manner, the expressions of Bax and Caspase-3 were depressed, while the expression of Bcl-2, PPARgamma protein and PPARgamma mRNA were enhanced by pioglitazone. (3) The apoptotic index of subgroups injected pioglitazone reduced significantly by TUNEL compared with model (P < 0.05). Agarose gel electrophoresis demonstrated that DNA ladder existed in model, pioglitazone 0.3 mg/kg and pioglitazone 1 mg/kg, but not pioglitazone 3 mg/kg.
CONCLUSIONSPioglitazone could protect the heart from I/R injury evidenced by the improvement in the expression of PPARgamma at the levels of protein and mRNA after pioglitazone administrated, and by the decrease in the apoptotic cardiomyocytes.
Animals ; Apoptosis ; drug effects ; Male ; Myocardial Reperfusion Injury ; metabolism ; Myocardium ; metabolism ; Myocytes, Cardiac ; cytology ; drug effects ; metabolism ; PPAR gamma ; metabolism ; Rats ; Rats, Sprague-Dawley ; Thiazolidinediones ; pharmacology
7.Effects of taurine on rabbit cardiomyocyte apoptosis during ischemia/reperfusion injury.
Ai-ying LI ; En-sheng JI ; Shu-ming ZHAO ; Zhi-Hong MA ; Quan LI
Chinese Journal of Applied Physiology 2004;20(3):224-227
AIMTo study the effect of taurine (Tau) on rabbit cardiomyocyte apoptosis during ischemia/reperfusion (I/R) injury.
METHODSRabbit heart I/R injury was induced by occluding the left anterior descending coronary artery for 45 min and reperfusion for 180 min. taurine (200 mg/kg) was intravenously injected 5 min before heart ischemia. Cardiomyocyte apoptosis was measured by using terminal deoxynucleotidyl transferase--mediated dUTP nick end labeling method (TUNEL), flow cytometry (FCM) and DNA agarose gel electrophoresis.
RESULTSDNA ladder pattern of DNA in myocardium was revealed by agarose gel electrophoresis in I/R group while was not found in Tau + I/R group. Apoptotic cardiomyocytes were sparse within ischemic myocardium at risk in Tau + I/ R group as compared with that in I/R group (TUNEL stain). Apoptosis rate in ischemic myocardium from I/R and Tau + I/R groups detected by flow cytometry was 17.66% +/- 1.54% and 4.86% +/- 1.23%, respectively. Fas and Bax protein expressions in ischemic myocardium of I/R group were higher than that in nonischemic myocardium group (P < 0.01), Bcl-2/Bax ratio in I/R group was lower than that in nonischemic myocardium (P < 0.01); while in Tau + I/R group, Fas and Bax protein expressions were lower than that in I/R group (P < 0.01), the Bcl-2/Bax ratio was higher than that in I/R group (P < 0.01).
CONCLUSIONTaurine reduced apoptosis of myocytes in I/R rabbit heart; its mechanism may involve Fas, Bax and Bcl-2 proteins expression.
Animals ; Apoptosis ; drug effects ; Apoptosis Regulatory Proteins ; metabolism ; Male ; Myocardial Ischemia ; metabolism ; pathology ; Myocytes, Cardiac ; cytology ; drug effects ; Rabbits ; Reperfusion Injury ; metabolism ; pathology ; Taurine ; pharmacology
8.Progress in research on function and mechanism of cardiac vascular system of taurine.
Hao-ming HUA ; Takashi ITO ; Zhi-gang QIU ; Junichi AZUMA
China Journal of Chinese Materia Medica 2005;30(9):653-658
The function for cardiac vascular system of taurine is extensive, and the mechanism is complicated. Taurine protects the cells from the cell injury caused by ischemia etc. Through repressing apoptosis, prevents endothelial dysfunction caused by hyperglycemia, hypercholesterolemia, smoking and homocysteine; suppresses the proliferation and calcification in vascular smooth muscle cells, promotes metabolization and excretion of cholesterol in the animal models of hyperlipemia, and confers the resistance to an oxidant, hypochlorous acid, produced by neutrophil on cells, and taurine chrolamine to inhibit activation of NF-kappaB, which might be associated with anti-atherosclerotic effect. Taurine mainly acts inside the cell. However, taurine transport system becomes aberrant in pathological myocardial and vascular tissue. In addition, taurine improves cardiovascular function in fructose-induced hypertension and an iron-overload murine animal models.
Animals
;
Antioxidants
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Proliferation
;
drug effects
;
Humans
;
Lipid Metabolism
;
drug effects
;
Materia Medica
;
pharmacology
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Cardiac
;
pathology
;
Taurine
;
pharmacology
9.Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.
Zheng LIU ; Li-Ping ZHANG ; Hui-Jie MA ; Chuan WANG ; Ming LI ; Qing-Shan WANG
Acta Physiologica Sinica 2005;57(5):599-604
Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease.
Animals
;
Calcium
;
metabolism
;
Calcium Channels
;
drug effects
;
Heart Ventricles
;
cytology
;
metabolism
;
Intracellular Fluid
;
drug effects
;
metabolism
;
Male
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Protein-Tyrosine Kinases
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Sarcoplasmic Reticulum
;
drug effects
;
metabolism
;
Stilbenes
;
pharmacology
10.Effects of glycine on apoptosis in murine cardiomyocyte suffering from ischemia and hypoxia.
Jun-li ZHOU ; Yue-sheng HUANG ; Hua-pei SONG ; Yong-ming DANG ; Dong-xia ZHANG ; Qiong ZHANG
Chinese Journal of Burns 2008;24(3):167-170
OBJECTIVETo investigate the effects of glycine on apoptosis in murine cardiomyocyte suffering from ischemia and hypoxia.
METHODSThe primary passage of cultured cardiomyocytes from neonatal rats were subjected to ischemia and hypoxia, and the cells were divided into IH (without other treatment), and G (with treatment of 5 mmol/L glycine) groups. Normal murine cardiomyocytes served as control (C group). Cardiomyocytes were cultured for 6 hours in vitro. Apoptosis, mitochondrial membrane potential and its distribution, the condition of mitochondria permeability transition pore (mPTP) were observed with expression of fluorescence intensity. The activity of caspase-3 was observed by Laser Scanning staining.
RESULTS(1) Apoptosis: the fluorescence intensity in IH group was obviously higher than that in G and C groups (P < 0.01). (2) Mitochondrial membrane potential: the fluorescence intensity in IH group was 32 +/- 7, which was obviously lower than that in G and C groups (52 +/- 4, 73 +/- 4, respectively, P < 0.01). (3) The condition of mPTP: the intensity in IH group was 27 +/- 4, which was obviously lower than that in G and C groups (62 +/- 8, 90 +/- 7, respectively, P < 0.01). (4) The activity of caspase-3: the activity of caspase-3 in IH group was obviously higher than that in G and C groups (P < 0.01).
CONCLUSIONGlycine can inhibit apoptosis in cardiomyocytes subjected to ischemia and hypoxia,and the effect may be attributable to changes in mitochondrial membrane potential, lessening opening of mPTP, alleviation of calcium overload , and decrease in activity of caspase-3.
Animals ; Apoptosis ; Caspase 3 ; metabolism ; Cell Hypoxia ; drug effects ; Cells, Cultured ; Glycine ; pharmacology ; Ischemia ; metabolism ; Myocytes, Cardiac ; cytology ; drug effects ; Rats ; Rats, Sprague-Dawley