1.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
2.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
3.Exploring the detection of MYD88 mutation in patients with Waldenström macroglobulinemia by different methods and specimens.
Yi TAO ; Zeng Kai PAN ; Shuo WANG ; Li WANG ; Wei Li ZHAO
Chinese Journal of Hematology 2022;43(5):388-392
Objective: To improve the positivity rate and accuracy of MYD88 mutation detection in patients with Waldenström macroglobulinemia (WM) . Methods: MYD88 mutation status was retrospectively evaluated in 66 patients diagnosed with WM in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from June 2017 to June 2021. The positivity rate and accuracy of the different methods and specimens for MYD88 mutation detection were analyzed. Results: MYD88 mutations were detected in 51 of 66 patients with WM, with an overall positivity rate of 77%. The positivity rate of the next-generation sequencing (NGS) or allele-specific polymerase chain reaction (AS-PCR) was significantly higher than that of the first-generation Sanger sequencing (84% vs 71% vs 46%, P<0.05) . For the different specimens, the positivity rate for the lymph nodes or bone marrow was significantly higher than that of peripheral blood (79% vs 84% vs 52%, P<0.05) . The positivity rate of the MYD88 mutation in the lymph nodes, bone marrow, and peripheral blood determined by NGS was 86%, 90%, and 67%, respectively. The positivity rate in the lymph nodes, bone marrow, and peripheral blood detected by AS-PCR was 78%, 81%, and 53%, respectively. Thirty-nine patients with WM underwent ≥ 2 MYD88 mutation detections. The final MYD88 mutational status for each patient was used as the standard to determine the accuracy of the different methods and in different specimens. The accuracy of MYD88 mutation detection in the lymph nodes (n=18) and bone marrow (n=13) by NGS was significantly higher than that in the peripheral blood (n=4) (100% vs 100% vs 75%, P<0.05) . There was no statistically significant difference in the accuracy of MYD88 mutation detection by AS-PCR in the lymph nodes (n=15) , bone marrow (n=11) , or peripheral blood (n=16) (93% vs 91% vs 88%, P>0.05) . Conclusions: In the detection of the MYD88 mutation in patients diagnosed with WM, NGS or AS-PCR is more sensitive than Sanger sequencing. Lymph nodes and bone marrow specimens are better than peripheral blood specimens.
China
;
Humans
;
Lymphoma, B-Cell
;
Mutation
;
Myeloid Differentiation Factor 88/metabolism*
;
Retrospective Studies
;
Waldenstrom Macroglobulinemia/genetics*
4.Effect of modified Danggui Shaoyao Powder on SOCS3/TLR4 signaling pathway in rats with chronic atrophic gastritis.
Xiao-Jia ZHENG ; Ping-Ping CHEN ; Yang LIU ; Jian-Hui SUN ; Nai-Lin ZHANG ; Bin WANG ; Qi-Quan LIU
China Journal of Chinese Materia Medica 2022;47(15):4128-4135
This study aims to investigate the effect of modified Danggui Shaoyao Powder on the suppressor of cytokine signaling 3(SOCS3)/Toll-like receptor 4(TLR4) signaling pathway in gastric tissue of rats with chronic atrophic gastritis(CAG).Sixty SPF-grade SD rats were randomly assigned into the normal group, model group, Moluo Pills group, and high-, medium-, and low-dose groups of modified Danggui Shaoyao Powder.The rats in other groups except the normal group were treated with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) to establish the CAG model.After 12 weeks of modeling, the rats in each group were administrated with corresponding drugs by gavage for 8 weeks.After the last administration, the histopathological changes of rat gastric mucosa were observed via hematoxylin-eosin(HE) staining.The serum levels of IL-6, TNF-α, and CRP were determined by enzyme-linked immunosorbent assay(ELISA).The mRNA levels of SOCS3 and TLR4 were determined by real-time PCR.The protein levels of SOCS3, TLR4, JAK2, p-JAK2, STAT3, and p-STAT3 in rat gastric tissue were measured by Western blot.Immunohistochemical method was employed to determine the protein levels of NF-κB, MyD88, NLRP3, Bcl-2, Bax, and Bad in rat gastric tissue.The results showed that modified Danggui Shaoyao Powder alleviated gastric mucosal atrophy of rats, significantly lowered the levels of IL-6, TNF-α, and CRP in rat serum, up-regulated the mRNA level of SOCS3, and down-regulated the mRNA level of TLR4 in rat gastric tissue.Furthermore, modified Danggui Shaoyao Powder up-regulated the protein level of SOCS3, down-regulated the protein levels of TLR4, p-JAK2, p-STAT3, NF-κB, MyD88, NLRP3, Bax, and Bad, and promoted the expression of Bcl-2 protein.Therefore, modified Danggui Shaoyao Powder may mitigate the gastric mucosal atrophy of rats by regulating the SOCS3/TLR4 signaling pathway.
Animals
;
Atrophy
;
Gastritis, Atrophic/genetics*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Powders
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Suppressor of Cytokine Signaling 3 Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
5.Effect of Tetrastigma hemsleyanum on sepsis and mechanism based on network pharmacology and experimental verification.
Jing-Ru ZHENG ; Chun-Lian JI ; Liang-Hui ZHAN ; Jin-Bao PU ; Li YAO
China Journal of Chinese Materia Medica 2022;47(17):4744-4754
Based on network pharmacology and in vivo experiment, this study explored the therapeutic effect of Tetrastigma hemsle-yanum(SYQ) on sepsis and the underlying mechanism. The common targets of SYQ and sepsis were screened out by network pharmacology, and the "SYQ-component-target-sepsis" network was constructed. The protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed based on DAVID to predict the anti-sepsis mechanism of SYQ. The prediction results of network pharmacology were verified by animal experiment. The network pharmacology results showed that the key anti-sepsis targets of SYQ were tumor necrosis factor(TNF), interleukin(IL)-6, IL-1β, IL-10, and cysteinyl asparate specific proteinase 3(caspase-3), which were mainly involved in Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway. The results of animal experiment showed that SYQ can decrease the content of C-reactive protein(CRP), procalcitonin(PCT), lactate dehydrogenase(LDH), IL-6, TNF-α, and IL-1β, increase the content of IL-10, and down-regulate the protein levels of Bcl-2-associa-ted X(Bax)/B-cell lymphoma 2(Bcl2), cleaved caspase-3, TLR4, MyD88, and p-NF-κB p65/NF-κB p65. In summary, SYQ plays an anti-inflammatory role in the treatment of sepsis by acting on the key genes related to inflammation and apoptosis, such as TNF-α, IL-6, IL-lβ, IL-10, Bax, Bcl2, and cleaved caspase-3. The mechanism is the likelihood that it suppresses the TLR4/MyD88/NF-κB signaling pathway, which verifies relative prediction results of network pharmacology.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
C-Reactive Protein
;
Caspase 3/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Lactate Dehydrogenases/metabolism*
;
Myeloblastin/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-kappa B/metabolism*
;
Network Pharmacology
;
Procalcitonin/therapeutic use*
;
Sepsis/genetics*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
6.Protective effect of Shenfu Injection on rats with chronic heart failure based on HMGB1/TLR4/NF-κB signaling pathway.
Shu-Min HUANG ; Xiao-Qian LIAO ; Xin-Yu FAN ; Zi-Yi WANG ; Si-Yuan HU ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2022;47(20):5556-5563
The study aimed to explore the mechanism and targets of Shenfu Injection in the regulation of inflammatory injury in chronic heart failure rats based on the high mobility group box-1/Toll like receptor 4/nuclear factor kappa-B(HMGB1/TLR4/NF-κB) signaling pathway. The rat model of chronic heart failure was established using isoproterenol. The modeled rats were divided into three groups by random number table: the model group, Shenfu group and glycopyrrolate group, and the normal group was also set. The rats were administrated for 15 consecutive days, and on the following day after the last administration, they were sacrificed for sample collection. The cardiac mass index and left ventricular mass index of the rats in each group were measured, and the echocardiogram was used to analyze the cardiac function indices, and ELISA to test the inflammatory indices in rat serum. The pathological morphology and fibrosis status of rat heart tissues were observed by HE staining and Masson staining, respectively. The content of HMGB1 was determined by immunofluorescence staining. The protein and mRNA expression of HMGB1/TLR4/TLR4 signaling pathway was detected by Western blot and RT-qPCR, respectively. The results showed that the chronic heart failure rat model was successfully prepared. The rats in the model group had reduced cardiac function, increased levels of HMGB1 and inflammatory factors(P<0.05), and elevated protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), with fibrous connective tissue hyperplasia, inflammatory cell infiltration and severe fibrosis. Shenfu Injection improved cardiac function, decreased the levels of HMGB1 and inflammatory factors(P<0.05) and the protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), ameliorated interstitial fibrous connective tissue hyperplasia and inflammatory cell infiltration, and reduced fibrosis. In conclusion, Shenfu Injection can reduce inflammatory damage and improve cardiac function in chronic heart failure rats by regulating the HMGB1/TLR4/NF-κB signaling pathway.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
HMGB1 Protein/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Hyperplasia
;
Rats, Sprague-Dawley
;
Signal Transduction
;
RNA, Messenger
;
Heart Failure/genetics*
;
Fibrosis
7.Danshen-Chuanxiongqin Injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/ TLR4-MyD88-NF-κB Pathway in tMCAO mice.
Xiao-Jing XU ; Jin-Bo LONG ; Kai-Yu JIN ; Li-Bing CHEN ; Xiao-Yan LU ; Xiao-Hui FAN
Chinese Journal of Natural Medicines (English Ed.) 2021;19(10):772-783
Danshen-Chuanxiongqin Injection (DCI) is a commonly used traditional Chinese medicine for the treatment of cerebral ischemic stroke in China. However, its underlying mechanisms remain completely understood. The current study was designed to explore the protective mechanisms of DCI against cerebral ischemic stroke through integrating whole-transcriptome sequencing coupled with network pharmacology analysis. First, using a mouse model of cerebral ischemic stroke by transient middle cerebral artery occlusion (tMCAO), we found that DCI (4.10 mL·kg
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal
;
Humans
;
Infarction, Middle Cerebral Artery/genetics*
;
Ischemic Stroke
;
Myeloid Differentiation Factor 88/genetics*
;
NF-kappa B/metabolism*
;
Stroke/genetics*
;
Toll-Like Receptor 2
;
Toll-Like Receptor 4/metabolism*
8.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
9.Effects of ATP on expression of inflammatory factors in endothelial progenitor cells induced by LPS and the mechanisms.
Bolin XIAO ; Meifang CHEN ; Mei YANG ; Zhilin XIAO
Journal of Central South University(Medical Sciences) 2018;43(12):1301-1308
To investigate the effects of adenosine triphosphate (ATP) on expression of inflammatory factors induced by lipopolysaccharide (LPS) in endothelial progenitor cells (EPCs), and to elucidate the possible mechanisms.
Methods: Mononuclear cells were isolated from human umbilical cord blood by density gradient centrifugation, RT-PCR was performed to detect the expression of inflammatory factors induced by LPS (1 mg/mL) in EPCs, the effect of low concentration (5 μmol/L) of ATP on expression of IL-1β, MCP-1 and ICAM-1, and the effect of different concentrations (5, 50 μmol/L) of ATP on the expression of Toll-like receptor (TLR) 4, myeloid differentiation primary response protein 88 (MyD88) and CD14. Western blot was performed to detect expression of TLR4 regulated proteins MyD88 and CD14 or to detect the low concentration (1, 5 μmol/L) of ATP on the expression of TLR4, MyD88 and CD14 and the NF-κB signaling pathway.
Results: EPCs highly expressed TLR4, and its ligand LPS (1 mg/mL) significantly upregulated mRNA expression of IL-1β, MCP-1 and ICAM-1 and protein expression of MyD88 and CD14 in a time-dependent manner (P<0.01), accompanied by activation of ERK and NF-κB signal pathway. ATP at low concentration (5 μmol/L) significantly inhibited LPS-induced mRNA expression of IL-1β, MCP-1 and ICAM-1(P<0.05), downregulated the LPS-induced protein expression of TLR4, MyD88 and CD14 in EPCs (P<0.05), and suppressed LPS-induced activation of NF-κB signaling pathway (P<0.05).
Conclusion: ATP at low concentration may suppress LPS-induced expression of inflammatory factors in EPCs through negative regulation of the TLR4 signaling pathway.
Adenosine Triphosphate
;
pharmacology
;
Endothelial Progenitor Cells
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Leukocytes, Mononuclear
;
cytology
;
Lipopolysaccharide Receptors
;
genetics
;
Lipopolysaccharides
;
pharmacology
;
Myeloid Differentiation Factor 88
;
genetics
;
NF-kappa B
;
metabolism
;
Signal Transduction
;
drug effects
;
Toll-Like Receptor 4
;
genetics
10.TLR/NF-κB independent signaling pathway in TNF-α suppression of diabetic MyD88-knockout mice after polysaccharides administration.
Tingting LIU ; Lingxiao WANG ; Xiaohui YANG ; Zhiqing YAO ; Huizhen CAI
Journal of Zhejiang University. Medical sciences 2018;47(1):35-40
OBJECTIVE:
: To investigate the effect of polysaccharides (LBPs) on TLR/NF-κB independent pathway and serum tumor necrosis factor (TNF-α) level in diabetic MyD88-knockout mice.
METHODS:
: Diabetes was induced by feeding high-fat/high-sugar diet and injection of low-dose streptozotocin in MyD88-knockout mice. The diabetic mice were randomly divided into model group, positive control group and LBPs group. The expressions of TRAM, TRIF, TRAF6, RIP1 and TNF-α mRNA and proteins in mouse peritoneal macrophages were detected by real-time RT-PCR and Western blotting after LBPs treatment for 3 month. Serum TNF-α was determined with ELISA kit.
RESULTS:
: Real time RT-PCR showed that compared with model group, the relative expressions of and mRNA in macrophages of LBPs group were significantly decreased and expression of was significantly increased (all <0.05). Expression of TRAM, TRIF, TRAF6, RIP1 and TNF-α proteins as well as serum TNF-α level had no significant difference between LBPs group and model group (all >0.05).
CONCLUSIONS
: LBPs may not inhibit serum TNF-α level through TLR/NF-κB independent pathway.
Animals
;
Diabetes Mellitus, Experimental
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Macrophages, Peritoneal
;
drug effects
;
Mice
;
Mice, Knockout
;
Myeloid Differentiation Factor 88
;
genetics
;
NF-kappa B
;
genetics
;
Random Allocation
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
blood
;
metabolism

Result Analysis
Print
Save
E-mail