1.Exploring the detection of MYD88 mutation in patients with Waldenström macroglobulinemia by different methods and specimens.
Yi TAO ; Zeng Kai PAN ; Shuo WANG ; Li WANG ; Wei Li ZHAO
Chinese Journal of Hematology 2022;43(5):388-392
Objective: To improve the positivity rate and accuracy of MYD88 mutation detection in patients with Waldenström macroglobulinemia (WM) . Methods: MYD88 mutation status was retrospectively evaluated in 66 patients diagnosed with WM in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from June 2017 to June 2021. The positivity rate and accuracy of the different methods and specimens for MYD88 mutation detection were analyzed. Results: MYD88 mutations were detected in 51 of 66 patients with WM, with an overall positivity rate of 77%. The positivity rate of the next-generation sequencing (NGS) or allele-specific polymerase chain reaction (AS-PCR) was significantly higher than that of the first-generation Sanger sequencing (84% vs 71% vs 46%, P<0.05) . For the different specimens, the positivity rate for the lymph nodes or bone marrow was significantly higher than that of peripheral blood (79% vs 84% vs 52%, P<0.05) . The positivity rate of the MYD88 mutation in the lymph nodes, bone marrow, and peripheral blood determined by NGS was 86%, 90%, and 67%, respectively. The positivity rate in the lymph nodes, bone marrow, and peripheral blood detected by AS-PCR was 78%, 81%, and 53%, respectively. Thirty-nine patients with WM underwent ≥ 2 MYD88 mutation detections. The final MYD88 mutational status for each patient was used as the standard to determine the accuracy of the different methods and in different specimens. The accuracy of MYD88 mutation detection in the lymph nodes (n=18) and bone marrow (n=13) by NGS was significantly higher than that in the peripheral blood (n=4) (100% vs 100% vs 75%, P<0.05) . There was no statistically significant difference in the accuracy of MYD88 mutation detection by AS-PCR in the lymph nodes (n=15) , bone marrow (n=11) , or peripheral blood (n=16) (93% vs 91% vs 88%, P>0.05) . Conclusions: In the detection of the MYD88 mutation in patients diagnosed with WM, NGS or AS-PCR is more sensitive than Sanger sequencing. Lymph nodes and bone marrow specimens are better than peripheral blood specimens.
China
;
Humans
;
Lymphoma, B-Cell
;
Mutation
;
Myeloid Differentiation Factor 88/metabolism*
;
Retrospective Studies
;
Waldenstrom Macroglobulinemia/genetics*
2.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
3.Inhibitory effect of dexamethasone on myeloid differentiation factor 88 and tumor necrosis factor-alpha expressions in mouse peritoneal macrophages.
Wen-jie ZHAO ; Li-yan XI ; Li MA ; Jun-min ZHANG ; Xi-qing LI ; Chang-ming LU ; Fei LI
Journal of Southern Medical University 2009;29(12):2404-2409
OBJECTIVETo study the inhibitory effect of dexamethasone (DEX) on myeloid differentiation factor 88 (MyD88) and tumor necrosis factor-alpha (TNF-alpha) expression in mouse peritoneal macrophages in innate immune response to Penicillium marneffei (PM).
METHODSMouse peritoneal macrophages were cultured in the presence of heat-inactivated yeast-phase PM with or without DEX, and the protein and mRNA expressions of MyD88 in the macrophages were detected using Western blotting and real-time PCR, respectively. TNF-alpha in the cell culture supernatant was measured with enzyme-linked immunosorbent assay.
RESULTSDEX suppressed TNF-alpha production by the macrophages co-cultured with PM. The expressions of MyD88 were up-regulated by PM stimulation, whose effect was inhibited by the application of DEX.
CONCLUSIONThe inhibitory effect of DEX on PM-induced proinflammatory responses of the macrophage is directly associated with the inhibition of MyD88 expression.
Animals ; Cells, Cultured ; Dexamethasone ; pharmacology ; Macrophages, Peritoneal ; cytology ; metabolism ; Male ; Mice ; Mice, Inbred BALB C ; Myeloid Differentiation Factor 88 ; drug effects ; genetics ; metabolism ; Penicillium ; growth & development ; Tumor Necrosis Factor-alpha ; drug effects ; genetics ; metabolism
4.Danshen-Chuanxiongqin Injection attenuates cerebral ischemic stroke by inhibiting neuroinflammation via the TLR2/ TLR4-MyD88-NF-κB Pathway in tMCAO mice.
Xiao-Jing XU ; Jin-Bo LONG ; Kai-Yu JIN ; Li-Bing CHEN ; Xiao-Yan LU ; Xiao-Hui FAN
Chinese Journal of Natural Medicines (English Ed.) 2021;19(10):772-783
Danshen-Chuanxiongqin Injection (DCI) is a commonly used traditional Chinese medicine for the treatment of cerebral ischemic stroke in China. However, its underlying mechanisms remain completely understood. The current study was designed to explore the protective mechanisms of DCI against cerebral ischemic stroke through integrating whole-transcriptome sequencing coupled with network pharmacology analysis. First, using a mouse model of cerebral ischemic stroke by transient middle cerebral artery occlusion (tMCAO), we found that DCI (4.10 mL·kg
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal
;
Humans
;
Infarction, Middle Cerebral Artery/genetics*
;
Ischemic Stroke
;
Myeloid Differentiation Factor 88/genetics*
;
NF-kappa B/metabolism*
;
Stroke/genetics*
;
Toll-Like Receptor 2
;
Toll-Like Receptor 4/metabolism*
5.Pyrosequencing as a Fast and Reliable Method in Detecting the MYD88 p.L265P Mutation in Decalcified Formalin-Fixed and Paraffin-Embedded Tissues.
Niklas GEBAUER ; Veronica BERNARD ; Claudia ROHNER ; Manuela KROKOWSKI ; Hartmut MERZ ; Alfred C FELLER ; Christoph THORNS
Annals of Laboratory Medicine 2014;34(2):170-173
No abstract available.
Adult
;
Aged
;
Base Sequence
;
Bone Marrow/metabolism/pathology
;
Female
;
Formaldehyde/chemistry
;
Gene Frequency
;
Humans
;
Male
;
Middle Aged
;
Multiple Myeloma/diagnosis/genetics
;
Mutation
;
Myeloid Differentiation Factor 88/chemistry/*genetics/metabolism
;
Paraffin Embedding
;
Sequence Analysis, DNA/*methods
;
Waldenstrom Macroglobulinemia/diagnosis/genetics
6.Effects of warming-needle therapy on gene expression pathways in the patient with knee osteoarthritis of deficiency-cold syndrome.
Li-ping YANG ; Ming-chen WANG ; Wang-gen LIU ; Mi-qu WANG
Chinese Acupuncture & Moxibustion 2007;27(9):677-680
OBJECTIVETo explore the mechanism of warming-needle therapy in treatment of knee osteoarthritis of deficiency-cold syndrome.
METHODSEight cases of knee osteoarthritis of deficiency-cold syndrome were selected and treated with warming-needle therapy at Guanyuan (CV 4), Qihai (CV 6) , Zosanli (ST 36), etc.. The gene expression profiles before and after treatment in 4 cases who showed better therapeutic effect were compared. Taking ratio < 0.5 or ratio > 2.0 as differentially expression gene and obtaining differentially expression pathway (P < 0.5, n>3) by http://www. DAVID 2006.
RESULTSTwo cases were clinically cured, 4 cases were markedly effective, 1 case was effective and 1 case was ineffective. With help of the microarray, 449 differentially expression genes, and 10 differentially expression pathways were obtained including 2 energy metabolism pathways (oxidative phosphorylation, ATP synthetase), 4 cell signal transduction pathways (insulin signal pathway, Toll-like receptor signal pathway, JAK-STAT signal pathway, and MAPK signal pathway) and cell apoptosis pathway.
CONCLUSIONWarming-needle therapy is an effective therapy for knee osteoarthritis with deficiency-cold syndrome , which is possibly involved in the control and regulation of many gene expression by various signal transduction pathways.
Acupuncture Therapy ; methods ; Aged ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Janus Kinases ; genetics ; MAP Kinase Signaling System ; Male ; Middle Aged ; Myeloid Differentiation Factor 88 ; genetics ; Needles ; Osteoarthritis, Knee ; metabolism ; therapy ; STAT Transcription Factors ; genetics ; Yang Deficiency ; metabolism ; therapy
7.Effects of ATP on expression of inflammatory factors in endothelial progenitor cells induced by LPS and the mechanisms.
Bolin XIAO ; Meifang CHEN ; Mei YANG ; Zhilin XIAO
Journal of Central South University(Medical Sciences) 2018;43(12):1301-1308
To investigate the effects of adenosine triphosphate (ATP) on expression of inflammatory factors induced by lipopolysaccharide (LPS) in endothelial progenitor cells (EPCs), and to elucidate the possible mechanisms.
Methods: Mononuclear cells were isolated from human umbilical cord blood by density gradient centrifugation, RT-PCR was performed to detect the expression of inflammatory factors induced by LPS (1 mg/mL) in EPCs, the effect of low concentration (5 μmol/L) of ATP on expression of IL-1β, MCP-1 and ICAM-1, and the effect of different concentrations (5, 50 μmol/L) of ATP on the expression of Toll-like receptor (TLR) 4, myeloid differentiation primary response protein 88 (MyD88) and CD14. Western blot was performed to detect expression of TLR4 regulated proteins MyD88 and CD14 or to detect the low concentration (1, 5 μmol/L) of ATP on the expression of TLR4, MyD88 and CD14 and the NF-κB signaling pathway.
Results: EPCs highly expressed TLR4, and its ligand LPS (1 mg/mL) significantly upregulated mRNA expression of IL-1β, MCP-1 and ICAM-1 and protein expression of MyD88 and CD14 in a time-dependent manner (P<0.01), accompanied by activation of ERK and NF-κB signal pathway. ATP at low concentration (5 μmol/L) significantly inhibited LPS-induced mRNA expression of IL-1β, MCP-1 and ICAM-1(P<0.05), downregulated the LPS-induced protein expression of TLR4, MyD88 and CD14 in EPCs (P<0.05), and suppressed LPS-induced activation of NF-κB signaling pathway (P<0.05).
Conclusion: ATP at low concentration may suppress LPS-induced expression of inflammatory factors in EPCs through negative regulation of the TLR4 signaling pathway.
Adenosine Triphosphate
;
pharmacology
;
Endothelial Progenitor Cells
;
drug effects
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Leukocytes, Mononuclear
;
cytology
;
Lipopolysaccharide Receptors
;
genetics
;
Lipopolysaccharides
;
pharmacology
;
Myeloid Differentiation Factor 88
;
genetics
;
NF-kappa B
;
metabolism
;
Signal Transduction
;
drug effects
;
Toll-Like Receptor 4
;
genetics
8.Protective effect of Shenfu Injection on rats with chronic heart failure based on HMGB1/TLR4/NF-κB signaling pathway.
Shu-Min HUANG ; Xiao-Qian LIAO ; Xin-Yu FAN ; Zi-Yi WANG ; Si-Yuan HU ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2022;47(20):5556-5563
The study aimed to explore the mechanism and targets of Shenfu Injection in the regulation of inflammatory injury in chronic heart failure rats based on the high mobility group box-1/Toll like receptor 4/nuclear factor kappa-B(HMGB1/TLR4/NF-κB) signaling pathway. The rat model of chronic heart failure was established using isoproterenol. The modeled rats were divided into three groups by random number table: the model group, Shenfu group and glycopyrrolate group, and the normal group was also set. The rats were administrated for 15 consecutive days, and on the following day after the last administration, they were sacrificed for sample collection. The cardiac mass index and left ventricular mass index of the rats in each group were measured, and the echocardiogram was used to analyze the cardiac function indices, and ELISA to test the inflammatory indices in rat serum. The pathological morphology and fibrosis status of rat heart tissues were observed by HE staining and Masson staining, respectively. The content of HMGB1 was determined by immunofluorescence staining. The protein and mRNA expression of HMGB1/TLR4/TLR4 signaling pathway was detected by Western blot and RT-qPCR, respectively. The results showed that the chronic heart failure rat model was successfully prepared. The rats in the model group had reduced cardiac function, increased levels of HMGB1 and inflammatory factors(P<0.05), and elevated protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), with fibrous connective tissue hyperplasia, inflammatory cell infiltration and severe fibrosis. Shenfu Injection improved cardiac function, decreased the levels of HMGB1 and inflammatory factors(P<0.05) and the protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), ameliorated interstitial fibrous connective tissue hyperplasia and inflammatory cell infiltration, and reduced fibrosis. In conclusion, Shenfu Injection can reduce inflammatory damage and improve cardiac function in chronic heart failure rats by regulating the HMGB1/TLR4/NF-κB signaling pathway.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
HMGB1 Protein/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Hyperplasia
;
Rats, Sprague-Dawley
;
Signal Transduction
;
RNA, Messenger
;
Heart Failure/genetics*
;
Fibrosis
9.Semi-mature MyD88-silenced bone marrow dendritic cells prolong the allograft survival in a rat model of intestinal transplantation.
Xiao-Jun YANG ; Song MENG ; Chun-Fu ZHU ; Hong JIANG ; Wen-Xi WU
Chinese Medical Journal 2011;124(2):268-272
BACKGROUNDSemi-mature dendritic cells (DCs) may induce tolerance rather than immunity. However, little is known about the regulatory mechanism by which these DCs induce transplant tolerance. Myeloid differentiation factor 88 (MyD88) is a key adaptor of Toll-like receptor signaling, which plays a critical role in DC maturation. Activation of MyD88-silenced immature DCs results in the generation of semi-mature DCs. We explored the possibility of using these DCs to induce intestinal transplant tolerance in rats.
METHODSMyD88 expression was silenced in bone marrow DCs (F344 rats) using small interfering RNAs for 24 hours, at which point, lipopolysaccharide (LPS) was added to the culture for another 48 hours. These cells were analyzed for their in vitro and in vivo tolerizing capacities.
RESULTSSemi-mature DCs expressing moderate levels of MHC class II and low levels of co-stimulatory molecules were found to produce interleukin (IL)-10, while IL-12 production was decreased. In vitro co-culture with completely allogeneic T cells from Wistar rats led to a significant decrease in alloreactive T-cell responses. In vivo, the transfer of semi-mature DCs (1 × 10(6) cells) followed by the transplantation of fully mismatched intestinal grafts (F344 rats) led to significantly prolonged survival compared to rats receiving immature and mature DCs. Serum from semi-mature DC-treated rats contained lower concentrations of the pro-inflammatory cytokines IL-2 and interferon-γ 5 days after transplantation.
CONCLUSIONSemi-mature DCs may promote inducible allograft tolerance and this study suggests a new strategy by which to facilitate the induction of transplant tolerance.
Animals ; Blotting, Western ; Bone Marrow Cells ; cytology ; Cell Proliferation ; Dendritic Cells ; cytology ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Intestines ; transplantation ; Male ; Myeloid Differentiation Factor 88 ; genetics ; metabolism ; Polymerase Chain Reaction ; Rats ; Rats, Inbred F344 ; T-Lymphocytes ; metabolism ; Transplantation, Homologous ; methods
10.Effect of Ligusticum wallichii-containing serum on expressions of Toll-like receptor 4 and myeloid differentiation factor 88 in hepatic stellate cells.
Hai-lan WANG ; Juan HE ; Wen-fu CAO ; Wen-long CHEN
China Journal of Chinese Materia Medica 2015;40(11):2191-2194
To observe the effect of Ligusticum wallichii-containing serum on the expressions of Toll-like receptor 4 and myeloid differentiation factor 88 in hepatic stellate cells. Clean-grade SD rats were randomly divided into 5 groups and orally given L. wallichii decoction, colchicine and normal saline for 7 d to prepare L. wallichii-containing serums. Except for the blank group, all of the remaining groups were stimulated with LPS 1 mg x L(-1) for 24 h. After being intervened, the L. wallichii-containing serums were cultured in 5% CO2 incubator at 37 degrees C for 24 hours. The expression of TLR4 and MyD88 were detected by RT-PCR and Western blot. After HSC was stimulated with LPS, TLR4 and MyD88 mRNA and protein expressions were significantly higher than the blank control group (P < 0.01). After being intervened with L. wallichii-containing serum, TLR4 and MyD88 mRNA and protein expressions were notably lower than the model group (P < 0.05 or P < 0.01). In conclusion, L. wallichii-containing serum could regulate the TLR4 signaling pathway and show the anti-fibrosis effect by inhibiting the expression of TLR4 and MyD88 in LPS-induced HSCs.
Animals
;
Female
;
Hepatic Stellate Cells
;
drug effects
;
metabolism
;
Ligusticum
;
Lipopolysaccharides
;
pharmacology
;
Liver Cirrhosis, Experimental
;
drug therapy
;
Myeloid Differentiation Factor 88
;
genetics
;
physiology
;
Phytotherapy
;
RNA, Messenger
;
analysis
;
Rats
;
Rats, Sprague-Dawley
;
Toll-Like Receptor 4
;
genetics
;
physiology