2.The expression and clinical significance of MyD88 in laryngeal cancer.
Baocai LU ; Wenyu DI ; Rong LIAN ; Zhenmin LU ; Wenfa YU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(16):1477-1479
OBJECTIVE:
To investigate the myeloid differentiation factor 88 (MyD88) expression in laryngeal carcinoma and its clinical significance.
METHOD:
Fifty-one patients with laryngeal carcinoma were collected, and all patients were confirmed by pathological diagnosis results. The expression of MyD88 protein was detected by immunohistochemical method in laryngeal cancer and its adjacent tissues to investigate the correlation among MyD88 expression, clinicopathological characteristics and prognosis of patients.
RESULT:
The positive expression rate of MyD88 in laryngeal cancer tissues was 68.6%, significantly higher than that in normal tissues adjacent to carcinoma of which positive expression rate was 11.8%; MyD88 positive rate had nothing to do with laryngeal cancer patients age, sex, differentiation and tumour location (all P > 0.05), but correlated with clinical stage (P < 0.01) and lymph node metastasis (P < 0.05). In addition, the study also found that the expression of MyD88 quantity was inversely proportional with the five-year survival rate. The survival rate of patients with higher expression of MyD88 was significantly lower than that of patients with lower expression (P < 0.05).
CONCLUSION
MyD88 may be an important participant in the pathogenesis of laryngeal carcinoma, MyD88 targeted therapy may improve the prognosis of patients with laryngeal cancer.
Humans
;
Laryngeal Neoplasms
;
metabolism
;
pathology
;
Lymphatic Metastasis
;
Myeloid Differentiation Factor 88
;
metabolism
;
Prognosis
;
Survival Rate
3.Exploring the detection of MYD88 mutation in patients with Waldenström macroglobulinemia by different methods and specimens.
Yi TAO ; Zeng Kai PAN ; Shuo WANG ; Li WANG ; Wei Li ZHAO
Chinese Journal of Hematology 2022;43(5):388-392
Objective: To improve the positivity rate and accuracy of MYD88 mutation detection in patients with Waldenström macroglobulinemia (WM) . Methods: MYD88 mutation status was retrospectively evaluated in 66 patients diagnosed with WM in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from June 2017 to June 2021. The positivity rate and accuracy of the different methods and specimens for MYD88 mutation detection were analyzed. Results: MYD88 mutations were detected in 51 of 66 patients with WM, with an overall positivity rate of 77%. The positivity rate of the next-generation sequencing (NGS) or allele-specific polymerase chain reaction (AS-PCR) was significantly higher than that of the first-generation Sanger sequencing (84% vs 71% vs 46%, P<0.05) . For the different specimens, the positivity rate for the lymph nodes or bone marrow was significantly higher than that of peripheral blood (79% vs 84% vs 52%, P<0.05) . The positivity rate of the MYD88 mutation in the lymph nodes, bone marrow, and peripheral blood determined by NGS was 86%, 90%, and 67%, respectively. The positivity rate in the lymph nodes, bone marrow, and peripheral blood detected by AS-PCR was 78%, 81%, and 53%, respectively. Thirty-nine patients with WM underwent ≥ 2 MYD88 mutation detections. The final MYD88 mutational status for each patient was used as the standard to determine the accuracy of the different methods and in different specimens. The accuracy of MYD88 mutation detection in the lymph nodes (n=18) and bone marrow (n=13) by NGS was significantly higher than that in the peripheral blood (n=4) (100% vs 100% vs 75%, P<0.05) . There was no statistically significant difference in the accuracy of MYD88 mutation detection by AS-PCR in the lymph nodes (n=15) , bone marrow (n=11) , or peripheral blood (n=16) (93% vs 91% vs 88%, P>0.05) . Conclusions: In the detection of the MYD88 mutation in patients diagnosed with WM, NGS or AS-PCR is more sensitive than Sanger sequencing. Lymph nodes and bone marrow specimens are better than peripheral blood specimens.
China
;
Humans
;
Lymphoma, B-Cell
;
Mutation
;
Myeloid Differentiation Factor 88/metabolism*
;
Retrospective Studies
;
Waldenstrom Macroglobulinemia/genetics*
4.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
5.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
6.Fine Particulate Matter Exposure Induces Toxicity by Regulating Nuclear Factor-κB/toll-like Receptor 4/myeloid Differentiation Primary Response Signaling Pathways in RAW264.7 Cells.
Mei Zhu ZHENG ; Yao LU ; Ting Ting LU ; Peng QIN ; Yu Qiu LI ; Dong Fang SHI
Biomedical and Environmental Sciences 2023;36(5):458-462
7.Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor.
Jia-Cheng SHEN ; Qin QI ; Dong HAN ; Yuan LU ; Rong HUANG ; Yi ZHU ; Lin-Shan ZHANG ; Xiu-di QIN ; Fang ZHANG ; Huan-Gan WU ; Hui-Rong LIU
Journal of Integrative Medicine 2023;21(2):194-204
OBJECTIVE:
This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR).
METHODS:
Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway.
RESULTS:
Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon.
CONCLUSION
Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023; 21(2): 194-204.
Rats
;
Animals
;
Crohn Disease/pathology*
;
Moxibustion/methods*
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Myeloid Differentiation Factor 88/metabolism*
;
Colitis
;
Inflammation
;
Enterohepatic Circulation
;
RNA, Messenger/metabolism*
8.Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide-Mediated Toll-Like Receptor 4-Myeloid Differentiation Factor 88-Nuclear Factor Kappa B Signaling Pathway.
Fang LI ; Haoran KE ; Siqi WANG ; Wei MAO ; Cexiong FU ; Xi CHEN ; Qingqing FU ; Xiaori QIN ; Yonghua HUANG ; Bidan LI ; Shibing LI ; Jingying XING ; Minhui WANG ; Wenlin DENG
Neuroscience Bulletin 2023;39(6):911-928
Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.
Mice
;
Animals
;
NF-kappa B
;
Myeloid Differentiation Factor 88/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Autistic Disorder/metabolism*
;
Signal Transduction/physiology*
9.Effect of jiedu quyu zishen recipe on TLR9 signal pathway of murine macrophage cells.
De-hong WU ; Yong-sheng FAN ; Guan-qun XIE ; Jin-jun JI ; Li XU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(4):466-470
OBJECTIVETo explore efficacy enhancing and detoxification roles of Jiedu Quyu Zishen Recipe (JQZR) in treating systemic lupus erythematosus (SLE) by studying its effect on Toll like receptor 9 (TLR9) signal pathway of murine macrophage cells after JQZR stimulated CpG oligodeoxynucletide (CpG ODN).
METHODSMurine macrophage cells in vitro cultured were randomly divided into 4 groups, i.e., the blank serum group, the CpG ODN stimulus group, the CpG ODN + dexamethasone group, the CpG ODN + medicated serum group. Murine macrophage cells were collected after 24-h intervention. The expression of TLR9, myeloid differentiation factor 88 (MyD88), NF-KB, IFN-α mRNA were analyzed by RT-PCR. The expression of TLR9 and NF-κB protein were analyzed by Western blot. Changes of the NF-KB transcriptional activity were assayed by Dual-Luciferase reporter assay system.
RESULTSmRNA expressions of TLR9, MyD88, NF-κB, and IFN-α, protein expressions of TLR9 and NF-κB, and NF-κB transcriptional activities were enhanced, showing statistical difference when compared with those of the blank serum group (P <0. 05, P <0. 01). Compared with the CpG ODN stimulus group, mRNA expressions of MyD88, NF-κB, and IFN-α, the protein expression of NF-κB and the NF-κB transcriptional activities decreased in the CpG ODN + dexamethasone group with statistical difference (P <0. 01). Compared with the CpG ODN stimulus group, mRNA expressions of TLR9, MyD88, NF-κB, and IFN-α, protein expressions of TLR9 and NF-κB, and NF-κB transcriptional activities were decreased in CpG ODN+ medicated serum group with statistical difference (P <0. 01).
CONCLUSIONEfficacy enhancing and detoxification roles of JQZR in treatment of SLE might be realized through regulating TLR9 signal pathways.
Animals ; Cell Line ; Drugs, Chinese Herbal ; pharmacology ; Humans ; Macrophages ; metabolism ; Mice ; Myeloid Differentiation Factor 88 ; NF-kappa B ; RNA, Messenger ; Signal Transduction ; Toll-Like Receptor 9 ; metabolism
10.Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway.
Yu BU ; Wen-Shuang LI ; Ji LIN ; Yu-Wei WEI ; Qiu-Ying SUN ; Shi-Jie ZHU ; Zhong-Sheng TANG
Chinese journal of integrative medicine 2022;28(2):153-161
OBJECTIVE:
To investigate whether electroacupuncture (EA) alleviates cognitive impairment by suppressing the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia (VaD).
METHODS:
The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table, including sham, four-vessel occlusion (4-VO), 4-VO+EA, 4-VO+non-EA, sham+EA, 4-VO+lipopolysaccharide (LPS), 4-VO+LPS+EA, and 4-VO+TAK-242 groups. The VaD model was established by the 4-VO method. Seven days later, rats were treated with EA at 5 acupoints of Baihui (DV 20), Danzhong (RN 17), Geshu (BL 17), Qihai (RN 6) and Sanyinjiao (SP 6), once per day for 3 consecutive weeks. Lymphocyte subsets, lymphocyte transformation rates, and inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α) were measured to assess immune function and inflammation in VaD rats. Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus. The levels of TLR4, MyD88, IL-6, and TNF-α were detected after EA treatment. TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA.
RESULTS:
Compared with the 4-VO group, EA notably improved immune function of rats in the 4-VO+EA group, inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats, reduced the expressions of serum IL-6 and TNF-α (all P<0.05 or P<0.01), and led to neuronal repair in the hippocampus. There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups, nor between the 4-VO+TAK-242 and 4-VO+EA groups (P>0.05).
CONCLUSIONS
EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway. Thus, EA may be a promising alternative therapy for the treatment of VaD.
Animals
;
Dementia, Vascular/therapy*
;
Electroacupuncture
;
Hippocampus/metabolism*
;
Immunity
;
Myeloid Differentiation Factor 88
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 4/metabolism*