1.Research progress on the functional polarization mechanism of myeloid-derived cells in the tumor microenvironment and their targeted therapy potential.
Chuangchuang LI ; Jingchang LI ; Xiaorui LI ; Yu SHA ; Weihong REN
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):844-850
Myeloid-derived cells (MDCs) are crucial in immune response and tissue homeostasis. They have high functional plasticity and can be polarized according to microenvironment signals. These cells, including macrophages, neutrophils, and dendritic cells (DCs), exhibit different functional polarization states in different pathological environments and are involved in the occurrence and development of diseases such as inflammation and tumors. Studies have shown that metabolic reprogramming plays a key role in the functional polarization of MDCs, affecting the cellular energy supply and regulating immune function. This paper reviews classification, function and polarization mechanism of MDCs and discusses metabolic reprogramming. In addition, the therapeutic strategies targeting MDC are summarized, which is expected to provide new targets for tumor immunotherapy.
Humans
;
Tumor Microenvironment/immunology*
;
Myeloid Cells/metabolism*
;
Neoplasms/pathology*
;
Animals
;
Immunotherapy/methods*
;
Dendritic Cells/immunology*
;
Macrophages/immunology*
2.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*
3.Effect of LINC00641 on Viability and Apoptosis of Acute Myeloid Leukemia Cells.
Yun-Ling ZHANG ; Ying YANG ; Yin SUN ; Hong-Li CHAI
Journal of Experimental Hematology 2025;33(4):998-1006
OBJECTIVE:
To investigate the effect of LINC00641 on the viability and apoptosis of acute myeloid leukemia (AML) cells and its mechanism.
METHODS:
RT-qPCR was applied to detect the relative expression levels of LINC00641, miR-204-5p, and MT1X in human normal bone marrow stromal cell lines HS-5 and AML cell lines, and to screen the optimal cell line THP-1 was screened for subsequent experiments. Bioinformatics, dual luciferase reporter assay, pull down assay, and RIP assay were applied to validate the targeting relationship between LINC00641, MT1X and miR-204-5p. EdU, CCK-8, flow cytometry, and Transwell assay were applied to detect cell proliferation, apoptosis, migration and invasion, respectively. Western blot was applied to detect the expression of MT1X , CyclinD1, Bcl-2, and Bax proteins.
RESULTS:
Compared with HS-5 cells, the expression of LINC00641 and MT1X was obviously increased in HL60, THP-1, U937, and KG1 cells, while the expression of miR-204-5p was obviously reduced (all P <0.05). THP-1 cells showed the most obvious changes (P <0.05). Silencing LINC00641 or overexpressing miR-204-5p was able to obviously inhibit the proliferation, migration and invasion of THP-1 cells, as well as the expression of CyclinD1 and Bcl-2 proteins, while promote cells apoptosis and Bax protein expression (all P <0.05). Bioinformatics analysis, dual luciferase reporter assay, pull down assay, and RIP assay all confirmed that there were targeted relationships between LINC00641, MT1X and miR-204-5p. Inhibiting miR-204-5p or overexpressing MT1X was able to respectively reverse the inhibitory effect of silencing LINC00641 or overexpressing miR-204-5p on THP-1 cells proliferation, migration and invasion, and reduce cells apoptosis.
CONCLUSION
LINC00641 is highly expressed in AML, and inhibition of LINC00641 expression can inhibit cell proliferation, migration, and invasion and increase apoptosis by regulating the miR-204-5p/MT1X axis.
Humans
;
Apoptosis
;
Leukemia, Myeloid, Acute/pathology*
;
MicroRNAs
;
Cell Proliferation
;
RNA, Long Noncoding/genetics*
;
Cell Movement
;
Cell Survival
;
Cell Line, Tumor
;
HL-60 Cells
4.A coupled diffusion-based model of interaction between tumor metastasis and myeloid-derived suppressive cells.
Journal of Southern Medical University 2025;45(8):1768-1776
OBJECTIVES:
To explore the key role of myeloid-derived suppressive cells (MDSCs) in pre-metastatic niche (PMN) and analyze their interrelationships with the main components in the microenvironment using a mathematical model.
METHODS:
Mathematical descriptions were used to systematically analyze the functions of MDSCs in tumor metastasis and elucidate their association with the major components (vascular endothelial cells, mesenchymal stromal cells, and cancer-associated macrophages) contributing to the formation of the pre-metastatic microenvironment. Based on the formation principle of the pre-metastatic microenvironment of tumors, the key biological processes were assumed to construct a coupled partial differential diffusion equation model. The existence and uniqueness of the model solutions were investigated using approximation methods, the qualitative theory of partial differential equations and Banach's immovable point theorem, and numerical simulations were carried out by differential numerical methods to verify the reliability and accuracy of the model.
RESULTS:
The existence and uniqueness of the local and overall solutions of the model were proved using the approximation method, the qualitative theory of partial differential equations and Banach's immovable point theorem in combination with the regularity estimation of the local solutions and the embedding inequality. Numerical simulation results further validated the reliability of the model and demonstrated the important role of MDSCs in the pre-metastatic microenvironment of tumors, especially in angiogenesis and immunosuppression.
CONCLUSIONS
This study reveals the important functions of MDSCs in the pre-metastatic microenvironment of tumors through mathematical modeling and numerical simulation, which provides an important theoretical basis for understanding the mechanism of tumor metastasis and devising cancer treatment strategies.
Tumor Microenvironment
;
Myeloid-Derived Suppressor Cells
;
Neoplasm Metastasis
;
Humans
;
Models, Biological
;
Models, Theoretical
;
Neoplasms/pathology*
5.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
6.Chemotherapy Combined with Venetoclax Followed by Allo-Hematopoietic Stem Cell Transplantation for Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm.
Ping CHENG ; Lan-Lan WANG ; Qiu-Xiang WANG ; Jun GUAN ; Ying ZHOU ; Bin HU ; Yan FENG ; Liang ZOU ; Hui CHENG
Journal of Experimental Hematology 2023;31(5):1531-1536
OBJECTIVE:
To investigate the efficacy and safety of chemotherapy combined with venetoclax followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN).
METHODS:
The clinical data of 3 patients with BPDCN undergoing allo-HSCT in Department of Hematology, Wuhan First Hospital from July 2017 to November 2021 were collected and retrospectively analyzed.
RESULTS:
Among the 3 patients, there were 1 male and 2 females, aged 27-52 years old. Skin lesions were observed during initial diagnosis, and it could also be characterized by acute leukemia. Characteristic molecular markers of tumor cells, such as CD4, CD56, CD123, and CD303 were positive. In addition, the expression detection of Bcl-2 in 3 patients were positive. Chemotherapy combined with venetoclax in the initial induction of chemotherapy (1 case) or disease recurrence and progress (2 cases) was performed. There were 2 cases evaluated as complete remission (CR) and 1 case as partial remission (PR) before allo-HSCT. The patients all received a nonmyeloablative conditioning without total body irradiation (TBI). The prevention programme of graft-versus-host disease (GVHD) was antithymocyte globulin + mycophenolate mofetil + cyclosporin A/FK506 ± methotrexate. The number of mononuclear cell (MNC) count was (16.73-18.35)×108/kg, and CD34+ cell count was (3.57-4.65)×106/kg. The 3 patients were evaluated as CR after allo-HSCT (+21 to +28 d), the donor-recipient chimerism rate was 100%, and Ⅲ-Ⅳ GVHD was not observed. One patient died at +50 d after transplantation, two patients were followed up for 28 months and 15 months, respectively, and achieved disease-free survival (DFS).
CONCLUSIONS
BPDCN is a highly aggressive malignant tumor with poor prognosis. Chemotherapy combined with venetoclax followed by allo-HSCT may lead to long-term DFS or even cure. Post-transplant maintenance is still unclear.
Female
;
Humans
;
Male
;
Adult
;
Middle Aged
;
Retrospective Studies
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Acute Disease
;
Graft vs Host Disease/prevention & control*
;
Myeloproliferative Disorders
;
Leukemia, Myeloid, Acute/pathology*
;
Dendritic Cells
7.The role of myeloid-derived suppressor cells in glioma microenvironment.
Journal of Biomedical Engineering 2019;36(3):515-520
Glioma is one of the most common primary tumors in the human brain with poor prognosis. The local and systemic immunosuppressive environment created by glioma cells enables them to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of the immunosuppression system. They are a heterogeneous cell population composed of early myeloid progenitor cells and precursor cells. Although the cells are diverse in phenotypes and functions, they all have strong immunosuppressive functions. MDSCs are extensively infiltrated into tumor tissues and play an important role in the glioma immunosuppressive microenvironment, which also hinders the immunotherapeutic effects of glioma. This article will review the phenotypic characteristics of MDSCs in the glioma microenvironment and their role in the progression of glioma. It is of positive significance to better understand the pathogenesis of glioma and explore effective comprehensive treatments.
Glioma
;
pathology
;
Humans
;
Immune Tolerance
;
Myeloid-Derived Suppressor Cells
;
cytology
;
Tumor Microenvironment
8.Ginseng-Derived Panaxadiol Saponins Promote Hematopoiesis Recovery in Cyclophosphamide-Induced Myelosuppressive Mice: Potential Novel Treatment of Chemotherapy-Induced Cytopenias.
Xin SUN ; Yan-Na ZHAO ; Song QIAN ; Rui-Lan GAO ; Li-Ming YIN ; Li-Pei WANG ; Beng-Hock CHONG ; Su-Zhan ZHANG
Chinese journal of integrative medicine 2018;24(3):200-206
OBJECTIVETo investigate the potential efficacy of panaxadiol saponins component (PDS-C), a biologically active fraction isolated from total ginsenosides, to reverse chemotherapy-induced myelosuppression and pancytopenia caused by cyclophamide (CTX).
METHODSMice with myelosuppression induced by CTX were treated with PDS-C at a low- (20 mg/kg), moderate- (40 mg/kg), or high-dose (80 mg/kg) for 7 consecutive days. The level of peripheral white blood cell (WBC), neutrophil (NEU) and platelet (PLT) were measured, the histopathology and colony formation were observed, the protein kinase and transcription factors in hematopoietic cells were determined by immunohistochemical staining and Western blot.
RESULTSIn response to PDS-C therapy, the peripheral WBC, NEU and PLT counts of CTX-induced myelosuppressed mice were significantly increased in a dose-dependent manner. Similarly, bone marrow histopathology examination showed reversal of CTX-induced myelosuppression with increase in overall bone marrow cellularity and the number of hematopoietic cells (P<0.01). PDS-C also promoted proliferation of granulocytic and megakaryocyte progenitor cells in CTX-treated mice, as evidenced by significantly increase in colony formation units-granulocytes/monocytes and -megakaryocytes (P<0.01). The enhancement of hematopoiesis by PDS-C appears to be mediated by an intracellular signaling pathway, this was evidenced by the up-regulation of phosphorylated mitogen-activated protein kinase (p-MEK) and extracellular signal-regulated kinases (p-ERK), and receptor tyrosine kinase (C-kit) and globin transcription factor 1 (GATA-1) in hematopoietic cells of CTX-treated mice (P<0.05).
CONCLUSIONSPDS-C possesses hematopoietic growth factor-like activities that promote proliferation and also possibly differentiation of hematopoietic progenitor cells in myelosuppressed mice, probably mediated by a mechanism involving MEK and ERK protein kinases, and C-kit and GATA-1 transcription factors. PDS-C may potentially be a novel treatment of myelosuppression and pancytopenia caused by chemotherapy.
Animals ; Antineoplastic Agents ; adverse effects ; Cell Proliferation ; drug effects ; Cyclophosphamide ; adverse effects ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; GATA1 Transcription Factor ; metabolism ; Ginsenosides ; pharmacology ; therapeutic use ; Hematopoiesis ; drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Myeloid Cells ; drug effects ; pathology ; Panax ; chemistry ; Pancytopenia ; chemically induced ; drug therapy ; pathology ; Phosphorylation ; drug effects ; Proto-Oncogene Proteins c-kit ; metabolism ; Saponins ; pharmacology ; Up-Regulation ; drug effects
9.Effect of Compound Zhebei Granule () combined with chemotherapy on surface markers of leukemia stem cell in patients with acute myeloid leukemia.
Jing WANG ; Zong-Lang LAI ; Xin-Yi CHEN ; Dong-Yun LI ; Ya-Yue ZHANG ; Wei MA ; Yu-Ting CHU ; Feng-Qin SHI ; Lu YANG ; Li HOU
Chinese journal of integrative medicine 2016;22(6):438-444
OBJECTIVETo observe the effects of Compound Zhebei Granule (, CZBG) combined with chemotherapy on surface markers of leukemia stem cell (LSC) in the bone marrow of patients with acute myeloid leukemia (AML).
METHODSSeventy-eight patients with AML received bone marrow aspiration and the percentages of CD34(+) CD123(+) and CD33(+) CD123(+) cells were tested using flow cytometry method. A total of 24 refractory or relapsed AML patients were enrolled and treated with one cycle of standard chemotherapy combined with CZBG. Bone marrow samples were obtained before and after treatment, and the percentages of CD34(+) CD123(+) and CD33(+) CD123(+) cells were examined by flflow cytometry.
RESULTSCompared with refractory or relapsed AML patients, patients achieved remission had a significant lower percentage of CD34(+) CD123(+) cells(P<0.01) and CD33(+) CD123(+) cells (P<0.01), indicating that controlling the LSC percentage may be important for patients with AML to achieve sustainable remission. Compared with those before treatment, the expression levels of CD34(+) CD123(+) were significantly decreased after CZBG combined with chemotherapy treatment (P<0.01). The percentages of CD34(+) CD123(+) cells and CD33(+) CD123(+) in patients achieving complete remission after CZBG combined with chemotherapy treatment were both significantly lower than those in patients with nonremission (P<0.01).
CONCLUSIONCZBG combining chemotherapy could reduce the percentages of CD34(+) CD123(+) and CD33(+) CD123(+) LSC, which might improve the clinical efficacy of refractory or relapsed AML.
Antigens, CD ; metabolism ; Antineoplastic Agents ; therapeutic use ; Antineoplastic Combined Chemotherapy Protocols ; therapeutic use ; Biomarkers, Tumor ; metabolism ; Bone Marrow Cells ; drug effects ; metabolism ; pathology ; Drugs, Chinese Herbal ; therapeutic use ; Female ; Humans ; Leukemia, Myeloid, Acute ; drug therapy ; pathology ; Male ; Middle Aged ; Neoplastic Stem Cells ; metabolism ; pathology ; Remission Induction
10.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
No abstract available.
Adult
;
Antigens, CD4/*metabolism
;
Antigens, CD56/*metabolism
;
Bone Marrow/metabolism/pathology
;
Dendritic Cells/cytology/*metabolism
;
Diagnostic Errors
;
Exons
;
Female
;
Flow Cytometry
;
Gene Rearrangement
;
Hematologic Neoplasms/diagnosis
;
Histone-Lysine N-Methyltransferase/genetics
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/*diagnosis
;
Male
;
Middle Aged
;
Myeloid-Lymphoid Leukemia Protein/genetics
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Transcription Factors/genetics
;
Translocation, Genetic

Result Analysis
Print
Save
E-mail