1.Biosynthesis of steroidal intermediates using Mycobacteria: a review.
Shikui SONG ; Jianxin HE ; Yongqi HUANG ; Zhengding SU
Chinese Journal of Biotechnology 2023;39(3):1056-1069
Steroids are a class of medicines with important physiological and pharmacological effects. In pharmaceutical industry, steroidal intermediates are mainly prepared through Mycobacteria transformation, and then modified chemically or enzymatically into advanced steroidal compounds. Compared with the "diosgenin-dienolone" route, Mycobacteria transformation has the advantages of abundant raw materials, cost-effective, short reaction route, high yield and environmental friendliness. Based on genomics and metabolomics, the key enzymes in the phytosterol degradation pathway of Mycobacteria and their catalytic mechanisms are further revealed, which makes it possible for Mycobacteria to be used as chassis cells. This review summarizes the progress in the discovery of steroid-converting enzymes from different species, the modification of Mycobacteria genes and the overexpression of heterologous genes, and the optimization and modification of Mycobacteria as chassis cells.
Mycobacterium/metabolism*
;
Steroids/metabolism*
;
Phytosterols/metabolism*
;
Genomics
2.Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi.
You-Qing LI ; Hong-Fang LIU ; Zhen-Le TIAN ; Li-Hua ZHU ; Ying-Hui WU ; He-Qing TANG
Biomedical and Environmental Sciences 2008;21(3):181-187
OBJECTIVETo biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi.
METHODSBacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products.
RESULTSFrom the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost complete degradation of diesel oil, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively.
CONCLUSIONThe observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.
Biodegradation, Environmental ; Cladosporium ; metabolism ; Environmental Pollutants ; metabolism ; Gasoline ; Mycobacterium ; metabolism
3.Identification of a new C-23 metabolite in sterol degradation of Mycobacterium neoaurum HGMS2 and analysis of its metabolic pathways.
Jianxin HE ; Xinlin DONG ; Yongqi HUANG ; Shikui SONG ; Zhengding SU
Chinese Journal of Biotechnology 2023;39(11):4550-4562
Mycobacterium neoaurum has the ability to produce steroidal intermediates known as 22-hydroxy-23, 24-bisnorchol-4-en-3-one (BA) upon the knockout of the genes for either the hydroxyacyl-CoA dehydrogenase (Hsd4A) or acyl-CoA thiolase (FadA5). In a previous study, we discovered a novel metabolite in the fermentation products when the fadA5 gene was deleted. This research aims to elucidate the metabolic pathway of this metabolite through structural identification, homologous sequence analysis of the fadA5 gene, phylogenetic tree analysis of M. neoaurum HGMS2, and gene knockout. Our findings revealed that the metabolite is a C23 metabolic intermediate, named 24-norchol-4-ene-3, 22-dione (designated as 3-OPD). It is formed when a thioesterase (TE) catalyzes the formation of a β-ketonic acid by removing CoA from the side chain of 3, 22-dioxo-25, 26-bisnorchol-4-ene-24-oyl CoA (22-O-BNC-CoA), followed by spontaneously undergoing decarboxylation. These results have the potential to contribute to the development of novel steroid intermediates.
Mycobacterium/metabolism*
;
Phylogeny
;
Steroids/metabolism*
;
Metabolic Networks and Pathways
;
Sterols/metabolism*
4.Relationship between the resuscitation promoting role of resuscitation promoting factor and the initial bacteria amount of dormant Mycobacterium tuberculosis.
Zhong-Quan LIU ; Ai-Ying XING ; Shu-Xiang GU ; Hong-Yan JIA ; Zong-De ZHANG
Acta Academiae Medicinae Sinicae 2009;31(4):423-426
OBJECTIVETo investigate the relationship between the resuscitation promoting role of resuscitation promoting factor and the initial bacteria amount of dormant Mycobacterium tuberculosis.
METHODSMycobacterium tuberculosis (dormant bacteria) was cultured for 100 days, then diluted into 1 mg/ml concentration with 7H9, and further diluted into 0.5, 0.25, 0.125, 0.0625, and 0.03125 mg/ml. Twelve new tubes added with 5 ml 7H9 and divided into two groups: the first group was added with the resuscitation-promoting factor protein, and the second group as control was added with 7H9. In each group the above diluted solutions were added. The tubes were located at 37 degrees C for culture. Optical density (OD) was detected on day 15, 25, 30, and 35. From each tube 1 microl culture solution was plated on 7H11 medium for colony counting.
RESULTSOD detection showed that bacteria proliferation in each group had positive linear correlation (P < 0.05, P < 0.01), indicating that the resuscitation-promoting factor played a similiar role in solutions with different dilution concentrations. 7H11 results and the OD results show that these two detection methods in each group had linear correlation (P < 0.05, P < 0.01), indicating that these two methods showed consistent test results.
CONCLUSIONThe resuscitation-promoting factor has no effect on the resuscitation of dormant Mycobacterium tuberculosis and its initial bacteria amount.
Bacterial Proteins ; metabolism ; Cytokines ; metabolism ; Mycobacterium tuberculosis ; physiology ; Resuscitation
5.Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site.
Areej M ABUHAMMAD ; Edward D LOWE ; Elizabeth FULLAM ; Martin NOBLE ; Elspeth F GARMAN ; Edith SIM
Protein & Cell 2010;1(4):384-392
Treatment of latent tuberculosis infection remains an important goal of global TB eradication. To this end, targets that are essential for intracellular survival of Mycobacterium tuberculosis are particularly attractive. Arylamine N-acetyltransferase (NAT) represents such a target as it is, along with the enzymes encoded by the associated gene cluster, essential for mycobacterial survival inside macrophages and involved in cholesterol degradation. Cholesterol is likely to be the fuel for M. tuberculosis inside macrophages. Deleting the nat gene and inhibiting the NAT enzyme prevents survival of the microorganism in macrophages and induces cell wall alterations, rendering the mycobacterium sensitive to antibiotics to which it is normally resistant. To date, NAT from M. marinum (MMNAT) is considered the best available model for NAT from M. tuberculosis (TBNAT). The enzyme catalyses the acetylation and propionylation of arylamines and hydrazines. Hydralazine is a good acetyl and propionyl acceptor for both MMNAT and TBNAT. The MMNAT structure has been solved to 2.1 Å resolution following crystallisation in the presence of hydralazine and is compared to available NAT structures. From the mode of ligand binding, features of the binding pocket can be identified, which point to a novel mechanism for the acetylation reaction that results in a 3-methyltriazolo[3,4-a]phthalazine ring compound as product.
Acetyltransferases
;
metabolism
;
Arylamine N-Acetyltransferase
;
chemistry
;
genetics
;
metabolism
;
Catalysis
;
Catalytic Domain
;
Crystallization
;
Mycobacterium
;
enzymology
;
metabolism
;
Mycobacterium marinum
;
enzymology
;
Mycobacterium tuberculosis
;
enzymology
;
genetics
;
metabolism
;
Protein Binding
6.Identification and Functional analysis of Gene Expression in Mycobacterium tuberculosis-infected Human Monocytic Cells Under Hypoxic Conditions.
Ji Sook LEE ; Jae Hee OH ; Ji Woong SON ; Chang Hwa SONG ; Hwa Jung KIM ; Jung Kyu PARK ; Tae Hyun PAIK ; Eun Kyeong JO
Journal of Bacteriology and Virology 2007;37(2):91-103
Mycobacterium tuberculosis-induced granulomatous lesions, particularly those undergoing central caseation, are known as hypoxic. To analyze the host genes associated with hypoxic conditions from cells infected with M. tuberculosis, we performed GeneChip analyses on mRNA from M. tuberculosis H37Rv-treated human monocytic THP-1 cells cultured in oxygen-depleted status for 18 h. The expression of 99 genes was altered, including those involved in intracellular signaling, energy production, and protein metabolism, as revealed by stringent microarray data analysis. Most notably, mRNA expression of chemokine macrophage inflammatory protein 3alpha/CC chemokine ligand 20 (CCL20) was significantly up-regulated in M. tuberculosis-infected cells under hypoxic conditions. We further analyzed the CCL20 expression in peripheral blood mononuclear cells (PBMCs) and monocyte derived macrophages (MDMs) from healthy controls and TB patients. A comparative analysis has revealed that the mRNA and protein expression of CCL20 were prominently up-regulated in PBMCs, and MDMs from TB patients, compared with healthy controls. Collectively, these data show that the gene expression of CCL20 was up-regulated in M. tuberculosis H37Rv-infected human monocytic THP-1 cells cultured in hypoxic conditions. In addition, the production of CCL20 is substantially increased in cells from TB patients than in healthy controls, suggesting an important role of CCL20 in the immunopathogenesis during TB infection.
Gene Expression*
;
Humans*
;
Macrophages
;
Metabolism
;
Mycobacterium tuberculosis
;
Mycobacterium*
;
RNA, Messenger
;
Statistics as Topic
;
Tuberculosis
7.Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.
Shan SUN ; Yan GAO ; Xiaolin YANG ; Xiuna YANG ; Tianyu HU ; Jingxi LIANG ; Zhiqi XIONG ; Yuting RAN ; Pengxuan REN ; Fang BAI ; Luke W GUDDAT ; Haitao YANG ; Zihe RAO ; Bing ZHANG
Protein & Cell 2023;14(6):448-458
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Siderophores/metabolism*
;
Iron/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Cryoelectron Microscopy
;
Adenosine Triphosphate/metabolism*
;
ATP-Binding Cassette Transporters
8.Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione.
Lele ZHANG ; Xian ZHANG ; Minglong SHAO ; Rongrong CHEN ; Zhiming RAO ; Hu LI ; Zhenghong XU
Chinese Journal of Biotechnology 2015;31(11):1589-1600
We constructed plasmid pMTac to overexpress 3-ketosteroid-Δ1-dehydrogenase (KSDD) in Mycobacterium neoaurum JC-12 for improving androst-1,4-diene-3,17-dione (ADD) production. To construct pMTac, pACE promoter on pMF41 was replaced by tac promoter, and then four recombinants were constructed, which were M. neoaurum JC-12/pMF41-gfp, M. neoaurum JC-12/pMTac-gfp, M. neoaurum JC-12/pMF41-ksdd and M. neoaurum JC-12/pMTac-ksdd. Fluorescence detection results show that much more green fluorescent protein (GFP) was expressed in M. neoaurum JC-12/pMTac-ksdd than M. neoaurum JC-12/pMF41-ksdd. The activity of KSDD was 2.41 U/mg in M. neoaurum JC-12/pMTac-ksdd, 6.53-fold as that of M. neoaurum JC-12 and 4.36-fold as that of M. neoaurum JC-12/pMF41-ksdd. In shake flask fermentation, ADD production of M. neoaurum JC-12/pMTac-ksdd was 5.94 g/L, increased about 22.2% compared to the original strain M. neoaurum JC-12 and 12.7% to M. neoaurum JC-12/pMF41-ksdd. AD (4-androstene-3,17-dione) production of JC-12/pMTac-ksdd was 0.17 g/L, decreased 81.5% compared to M. neoaurum JC-12 and 71.2% to M neoaurum JC-12/pMF41-ksdd. In the 5 L fermenter, 20 g/L phytosterols was used as substrate, ADD production of M. neoaurum JC-12/pMTac-ksdd was improved to 10.28 g/L. pMTac is favorable for expressing KSDD in M. neoaurum JC-12, and overexpression of KSDD has beneficial effect on ADD producing, and it is the highest level ever reported using fermentation method in M. neoaurum.
Androstadienes
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Mycobacterium
;
Oxidoreductases
;
genetics
;
metabolism
;
Phytosterols
;
metabolism
;
Plasmids
9.Candidate Mycobacterium tuberculosis genes targeted by human microRNAs.
Weirui GUO ; Jiong-Tang LI ; Xiao PAN ; Liping WEI ; Jane Y WU
Protein & Cell 2010;1(5):419-421
10.Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805.
Jiadai YUAN ; Guiying CHEN ; Shijun CHENG ; Fanglan GE ; Wang QIONG ; Wei LI ; Jiang LI
Chinese Journal of Biotechnology 2015;31(4):523-533
9α-hydroxy-4-androstene-3,17-dione (9-OH-AD) is an important intermediate in the steroidal drugs production. 3-ketosteroid-9α-hydroxylase (KSH), a two protein system of KshA and KshB, is a key-enzyme in the microbial steroid ring B-opening pathway. KSH catalyzes the transformation of 4-androstene-3,17-dione (AD) into 9-OH-AD specifically. In the present study, the putative KshA and KshB genes were cloned from Mycobacterium smegmatis mc(2)155 and Gordonia neofelifaecis NRRL B-59395 respectively, and were inserted into the expression vector pNIT, the co-expression plasmids of kshA-kshB were obtained and electroporated into Mycobacterium sp. NRRL B-3805 cells. The recombinants were used to transform steroids, the main product was characterized as 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), showing that kshA and kshB were expressed successfully. Different from the original strain Mycobacterium sp. NRRL B-3805 that accumulates 4-androstene-3,17-dione, the recombinants accumulates 9α-hydroxy-4-androstene-3,17-dione as the main product. This results indicates that the putative genes kshA, kshB encode active KshA and KshB, respectively. The process of biotransformation was investigated and the results show that phytosterol is the most suitable substrate for biotransformation, kshA and kshB from M. smegmatis mc(2)155 seemed to exhibit high activity, because the resultant recombinant of them catalyzed the biotransformation of phytosterol to 9-OH-AD in a percent conversion of 90%, which was much higher than that of G. neofelifaecis NRRL B-59395. This study on the manipulation of the ksh genes in Mycobacterium sp. NRRL B-3805 provides a new pathway for producing steroid medicines.
Androstenedione
;
analogs & derivatives
;
biosynthesis
;
Bacterial Proteins
;
genetics
;
metabolism
;
Biotransformation
;
Ketosteroids
;
Mixed Function Oxygenases
;
genetics
;
metabolism
;
Mycobacterium
;
metabolism
;
Mycobacterium smegmatis
;
enzymology
;
Plasmids