1.Identification of nontuberculous mycobacteria in patients with multidrug-resistant tuberculosis in Quezon City, Philippines, using multiplex PCR
Michelle M. Cabanatan ; Alice Alma C. Bungay ; Sharon Yvette Angelina M. Villanueva ; Marohren C. Tobias-altura ; Dario D. Defensor ; Maria Margarita M. Lota
Acta Medica Philippina 2025;59(4):103-112
BACKGROUND AND OBJECTIVE
Nontuberculous mycobacteria (NTM) lung disease appears like tuberculosis infection but is resistant to primary anti-tuberculosis drugs. Hence, patients whose sputum sample tests positive for acid-fast bacilli (AFB) and bacterial culture for several times should be assessed for colonization or infection with NTM in a damaged lung secondary to TB. In such cases, though drug-resistant TB may be adequately treated, treatment may need to be directed towards the NTM as well. In NTM therapy, the duration and choice of treatment agent is based upon the specific organism and disease extent. This study used one-step multiplex PCR (mPCR) assay for rapid differentiation of solid cultures in Ogawa medium as Mycobacterium tuberculosis (MTB) and/or NTM.
METHODSA total of 80 stocked isolates obtained from the Lung Center of the Philippines from January to December 2018 were screened for NTM in terms of growth in Ogawa medium, acid fastness, and MPT64 TB antigen test result. These were from sputum specimens of multidrug-resistant tuberculosis (MDR-TB) patients. DNA was extracted from cultures (n=55) grown in Ogawa medium and one-step mPCR was performed to identify NTM to the species level.
RESULTSOut of 80 samples screened, a total of 55 isolates were identified as NTM. One-step mPCR identified 12.73% (7/55) as M. abscessus, 34.55% (19/55) as M. massiliense, 1.82% (1/55) as M. kansasii, and 50.91% (28/55) were identified only up to genus Mycobacteria spp. Neither M. avium complex nor M. intracellulare was identified among the samples tested.
CONCLUSIONOne-step mPCR was able to identify isolates as MTB or NTM coinciding with the initial screening using MPT64 TB antigen test. Multiplex PCR has given a more specific identificati on to the species level. The use of mPCR in identifying MTB and clinically significant NTM’s is suitable for the adequate treatment of mycobacterial infection.
Human ; Bacteria ; Multiplex Pcr ; Multiplex Polymerase Chain Reaction ; Mycobacteria ; Mycobacterium ; Tuberculosis, Multidrug-resistant
2.Characteristics of immune response induced by mucosal immunization with recombinant adenovirus of Mycobacterium tuberculosis phosphodiesterase.
Ting DAI ; Yanzhi LU ; Ruihua ZHAO ; Huanhuan NING ; Jian KANG ; Leran HAO ; Jialing LI ; Yuxiao CHANG ; Yinlan BAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):1-8
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF). Real-time quantitative PCR was performed to assess the transcription levels of cytokines interferon γ(IFN-γ) and interleukin 10(IL-10) in mouse lungs. Flow cytometry was used to determine the proportions of CD4+ and CD8+ T cell subsets in the lungs and spleens. ELISA was employed to measure the levels of cytokines IFN-γ, IL-2, IL-10, inflammatory factors IL-6, and tumor necrosis factor α (TNF-α) secreted by spleen cells following antigen stimulation. The bacteria loads in the lungs and spleens of Mtb-infected mice were enumerated by plate counting methods. Resluts Intranasal immunization with rAd-CnpB induced high titers of IgG in mouse serum and the production of IgG and IgA in BALF, along with alterations in T lymphocyte subsets in the lungs and spleens. Administration of rAd-CnpB, either alone or in combination with drugs, to Mtb-infected mice significantly increased serum IgG levels as well as IgA and IgG levels in BALF. rAd-CnpB immunization promoted the secretion of CnpB-specific cytokines and inflammatory factors by splenocytes in Mtb-infected mice. However, rAd-CnpB immunotherapy, either alone or combined with drugs, did not significantly affect the bacterial loads in the lungs and spleens of mice with Mtb respiratory infections. Conclusion Mucosal immunization with rAd-CnpB induced significant mucosal, humoral and cellular immune responses in mice, and significantly enhanced CnpB-specific cellular immune responses in Mtb-infected mice.
Animals
;
Adenoviridae/immunology*
;
Mycobacterium tuberculosis/genetics*
;
Mice
;
Female
;
Phosphoric Diester Hydrolases/genetics*
;
Tuberculosis Vaccines/administration & dosage*
;
Tuberculosis/prevention & control*
;
Mice, Inbred BALB C
;
Cytokines
;
Lung/microbiology*
;
Immunization
;
Bronchoalveolar Lavage Fluid/immunology*
;
Immunity, Mucosal
3.miR-207 targets autophagy-associated protein LAMP2 to regulate the mechanism of macrophage-mycobacterium tuberculosis interaction.
Wenya DU ; Yumei DAI ; Linzhi YUE ; Tao MA ; Lixian WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):97-104
Objectives miR-207 has been identified as being expressed in natural killer (NK) cell exosomes that play a role in disease progression; however, to date, there are no studies specifically linking miR-207 to tuberculosis (TB). Methods Bioinformatics methods employed for prediction, followed by a dual luciferase reporter assay to determine whether lysosome-associated membrane protein 2 (LAMP2) is targeted by miR-207. The experiments were divided into four groups using the liposome transfection method (OP-LAMP2 group: co-transfected with miR-207 mimics and LAMP2 overexpression plasmid; EP group: co-transfected with mimics NC and null-loaded plasmid; siLAMP2 group: transfected with siLAMP2; and siLAMP2-NC group: transfected with siLAMP2-NC). TB infection was modeled using H37Ra-infected Ana-1 cells. The impact of LAMP2 on intracellular mycobacterial load and clearance of extracellular residual mycobacteria were assessed by tuberculosis colony-forming unit counting. Flow cytometry was used to assess the total apoptosis rate. Real-time fluorescent quantitative PCR was conducted to determine the relative expression of LAMP2, apoptosis genes, pyroptosis genes, and autophagy genes. Western blot analysis was performed to measure the relative expression of LAMP2 proteins, apoptosis proteins, pyroptosis proteins, and autophagy proteins. Results Dual luciferase reporter assay test showed that there was a targeting relationship between LAMP2 and miR-207. The transfection model was successfully constructed under real-time fluorescent quantitative PCR and Western blot statistical analysis, and microscopic observation. The infection model was successfully established under microscopic observation. Colony forming unit counting revealed that the number of colonies in the OP-LAMP2 group was lower than that in the EP group, while the number of colonies in the siLAMP2 group was higher than that in the siLAMP2-NC group. Flow cytometry assay revealed that the total apoptosis in OP-LAMP2 group was lower than that in EP group, and the total apoptosis in siLAMP2 group was higher than that in siLAMP2-NC group. Real-time fluorescence quantitative PCR and Western blot analysis revealed that the relative expression of apoptosis and pyroptosis-related proteins and genes in the control group was lower in the OP-LAMP2 group compared to the EP group, and higher in the siLAMP2 group compared to the siLAMP2-NC group. Real-time fluorescence quantitative PCR detected that the relative expression of autophagy positively regulated genes Microtubule-associated protein 1 light chain 3(LC3)and Beclin1 in the OP-LAMP2 group was higher in the OP-LAMP2 group compared to the EP group, and lower in the siLAMP2 group compared to the siLAMP2-NC group, while the relative expression of negatively regulated autophagy genes followed the opposite trend to that of autophagy positively regulated genes. The relative expression of autophagy-related proteins was consistent with the trend of autophagy genes. Conclusions miR-207 enhances macrophage apoptosis, cellular pyroptosis and inhibits autophagy, promoting survival of Mycobacterium tuberculosis by targeting the autophagy-related protein LAMP2, thus offering a novel therapeutic direction for tuberculosis.
Lysosomal-Associated Membrane Protein 2/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Autophagy/genetics*
;
Humans
;
Macrophages/metabolism*
;
Apoptosis/genetics*
;
Tuberculosis/metabolism*
;
Cell Line
;
Pyroptosis/genetics*
4.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
5.Mycobacterium tuberculosis PPE59 promotes its survival in host cells by regulating cytokine secretion of Mycobacterium smegmatis infected macrophages.
Chutong WANG ; Fangzheng GUO ; Yamin SONG ; Jing WEI ; Minying LI ; Hongtao WANG ; Tao XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):875-881
Objective To study the effect of Mycobacterium tuberculosis (Mtb) Pro-Pro-Glu-59 (PPE59) protein on the biological function of Mycobacterium smegmatis (Ms) and the regulation of host cell immune response. Methods PPE59 gene fragment was obtained by PCR amplification, cloned into pALACE, constructed into recombinant pALACE-PPE59 vector, and electro-transformed into Ms. Western blot was applied to analyse PPE59 expression and subcellular localization. The survival of Ms_Vec and Ms_PPE59 under low acid (pH=3 and pH=5) conditions and active surface pressure sodium dodecyl sulfate (SDS) conditions and their intracellular survival in macrophages were analyzed. ELISA was used to detect the cytokine (IL-1β, IL-6, IL-12, TNF-α and IL-10) expression levels of Ms_Vec and Ms_PPE59 infected macrophages. Results PPE59 protein localized to the cell wall of Ms can enhance the acid-resistance and anti-SDS effect of Ms, which is conducive to the survival of Ms in macrophages. PPE59 significantly decreased the secretion levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-12 and TNF-α), and promoted the secretion levels of anti-inflammatory cytokine (IL-10). Conclusion PPE59 enhances the survival ability of Ms under low acid and SDS pressure and promotes its intracellular survival by regulating the cytokine secretion levels.
Mycobacterium smegmatis/metabolism*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Bacterial Proteins/metabolism*
;
Animals
;
Mice
;
Antigens, Bacterial/metabolism*
6.Comparative Transcriptomic and Metabolomic Analyses Reveal the Mechanism by Which Foam Macrophages Restrict Survival of Intracellular Mycobacterium Tuberculosis.
Xiao PENG ; Yuan Yuan LIU ; Li Yao CHEN ; Hui YANG ; Yan CHANG ; Ye Ran YANG ; Xuan ZHANG ; An Na JIA ; Yong Bo YU ; Yong Li GUO ; Jie LU
Biomedical and Environmental Sciences 2025;38(7):781-791
OBJECTIVES:
This study aimed to investigate the impact of foam macrophages (FMs) on the intracellular survival of Mycobacterium tuberculosis (MTB) and identify the molecular mechanisms influencing MTB survival.
METHODS:
An in vitro FM model was established using oleic acid induction. Transcriptomic and metabolomic analyses were conducted to identify the key molecular pathways involved in FM-mediated MTB survival.
RESULTS:
Induced FMs effectively restricted MTB survival. Transcriptomic and metabolomic profiling revealed distinct changes in gene and metabolite expression in FMs during MTB infection compared with normal macrophages. Integrated analyses identified significant alterations in the cyclic adenosine monophosphate (cAMP) signaling pathway, indicating that its activation contributes to the FM-mediated restriction of MTB survival.
CONCLUSIONS
FMs inhibit MTB survival. The cAMP signaling pathway is a key contributor. These findings enhance the understanding of the role of FMs in tuberculosis progression, suggest potential targets for host-directed therapies, and offer new directions for developing diagnostic and therapeutic strategies against tuberculosis.
Mycobacterium tuberculosis/physiology*
;
Transcriptome
;
Metabolomics
;
Foam Cells/microbiology*
;
Humans
;
Metabolome
;
Tuberculosis/microbiology*
;
Gene Expression Profiling
7.Non-homologous end-joining (NHEJ): physiological function in Mycobacterium and application in gene editing.
Shasha XIANG ; Yu HUANG ; Jianping XIE
Chinese Journal of Biotechnology 2025;41(4):1280-1290
DNA double-strand breaks represent a common type of serious DNA damage in living organisms, causing instability of the genome and leading to cell death. Homologous recombination and non-homologous end-joining (NHEJ) are the two main ways to repair DNA double-strand breaks. The core components involved in the NHEJ pathway are highly conserved in both yeast and humans. A few bacteria such as Mycobacterium, Pseudomonas aeruginosa, and Bacillus subtilis also have the NHEJ mechanism. NHEJ plays a key role in the double strand repair of Mycobacterium in latency. This paper summarizes the mechanism and important components of NHEJ in Mycobacterium, introduces the application of NHEJ in gene editing, and reviews the research progress of the NHEJ pathway in Mycobacterium. We hope to bring new insights into the molecular mechanism and provide clues for the application of NHEJ in Mycobacterium.
DNA End-Joining Repair/physiology*
;
Gene Editing/methods*
;
Mycobacterium/physiology*
;
DNA Breaks, Double-Stranded
;
Humans
8.Research progress on immunological properties of ESAT-6 secreted by Mycobacterium tuberculosis and its role in new vaccines.
Yujie LI ; Haiyan YU ; Yuting YANG ; Guoping YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):89-94
Early secreted antigenic target of 6 kDa protein (ESAT-6) is the major virulence factor of Mycobacterium tuberculosis (MTB), which can resist the clearance of MTB in bodies by inhibiting macrophage phagocytosis and autophagy reaction, thus impeding the immune defense function of the body against MTB infection. In addition, ESAT-6-induced apoptosis of macrophage and massive necrosis of innate immune cells can foster MTB proliferation and colonization, leading to systemic MTB infection. Moreover, ESAT-6 hampers the protective immune response of Th1 cells, reducing the secretion of pro-inflammatory cytokines and contributing to immune dysfunction, thus accelerating the course of MTB infection. During the process, the high immunogenicity of ESAT-6 can be leveraged as a dominant antigen in the development of new TB vaccines, making it a promising candidate with broad prospects for further development.
Humans
;
Mycobacterium tuberculosis
;
Vaccines
;
Cytokines
;
Apoptosis
;
Autophagy
;
Sepsis
9.Clinical value of automated EasyNAT system for the diagnosis of tuberculosis in paraffin-embedded tissues.
Jialu CHE ; Zichen LIU ; Kun LI ; Chen ZHANG ; Nanying CHE
Journal of Peking University(Health Sciences) 2024;56(6):1047-1051
OBJECTIVE:
Assessing the accuracy of automated EasyNAT system for rapidly detecting paraffin-embedded tissue for the diagnosis of tuberculosis.
METHODS:
A retrospective analysis was conducted on 134 patients, comprising 101 with confirmed tuberculosis and 33 without tuberculosis, treated at Beijing Chest Hospital, Capital Medical University, between 2018 and 2022.The clinical diagnostic results served as the standard for assessing the diagnostic performance of the EasyNAT system in comparison to quantitative real-time polymerase chain reaction (qPCR) for tuberculosis detection in paraffin-embedded tissues.The evaluation criteria included sensitivity, specificity, positive predictive value, negative predictive value, and accuracy rate.
RESULTS:
Based on the clinical diagnostic results, the EasyNAT assay demonstrated a sensitivity of 87.1%(88/101, 95%CI: 79.2%-92.3%)and a specificity of 100.0%(33/33, 95%CI: 89.6%-100.0%).The positive predictive value, negative predictive value, and accuracy rate were 100% (88/88, 95%CI: 95.8%-100.0%), 71.7%(33/46, 95%CI: 57.5%-82.7%), and 90.3%(121/134, 95%CI: 84.1%-94.2%), respectively.In comparison, the qPCR assay exhibited a sensitivity of 96.0%(90.3%-98.5%)and a specificity of 100.0%(89.6%-100.0%).The positive predictive value, negative predictive value, and accuracy rate for qPCR were 100.0%(96.2%-100.0%), 89.2%(75.3%- 95.7%), and 97.0%(92.6%-98.8%).The Cohen's kappa value of 0.84 indicated substantial agreement between EasyNAT and qPCR.The detection rate of tuberculosis using this method was 86.4%(38/44, 95%CI: 73.3%-93.6%), while the detection rate for extrapulmonary tuberculosis was 87.7%(50/57, 95%CI: 76.8%-93.9%).In comparison, qPCR showed a detection rate of 97.7%(88.2%- 99.6%) for pulmonary tuberculosis and 94.7%(85.6%-98.6%)for extrapulmonary tuberculosis.There was no statistically significant difference in the detection results between the method and qPCR for both pulmonary and extrapulmonary tuberculosis(P>0.05).Importantly, the EasyNAT detection combined nucleic acid extraction, amplification, and analysis into one process.Compared with traditional qPCR methods, manual operation time was reduced by 2 hours, leading to an overall reduction in total testing time by 3 hours.
CONCLUSION
The EasyNAT nucleic acid rapid detection system can quickly, conveniently, and accurately detect Mycobacterium tuberculosis DNA in paraffin-embedded tissues, demonstrating significant clinical utility in the pathological diagnosis of tuberculosis.
Humans
;
Retrospective Studies
;
Paraffin Embedding
;
Sensitivity and Specificity
;
Tuberculosis/microbiology*
;
Real-Time Polymerase Chain Reaction
;
Mycobacterium tuberculosis/genetics*
;
Predictive Value of Tests
;
Nucleic Acid Amplification Techniques/methods*
;
Female
;
Male
10.Quantitative comparison of phospho-proteins of Mycolicibacterium smegmatis at different growing phases.
Danyang XU ; Yuan GAO ; Jiahui SHI ; Songhao JIANG ; Yu XUE ; Yao ZHANG
Chinese Journal of Biotechnology 2024;40(11):4098-4110
Protein phosphorylation plays a key role in Mycobacterium tuberculosis, the pathogen of tuberculosis, holding promise as a new target of anti-tuberculosis drugs. We used M. smegmatis, a close relative of M. tuberculosis, as a model organism to study the protein phosphorylation at different growth phases. We identified 573 phosphorylated peptides and 816 phosphorylated sites of 385 proteins in the M. smegmatis samples at both logarithmic and stationary phases, and then established a comprehensive dataset of phosphorylated proteins in M. smegmatis. By comparing the expression levels of phosphorylated proteins between the logarithmic and the stationary phase with the selected ion monitoring (SIM) strategy, we verified 68 upregulated proteins involved in cell division and protein translation, and 69 downregulated proteins mainly involved in the tricarboxylic acid cycle pathway. The differentially expressed phosphorylated proteins were significantly enriched in important cellular cycle events such as cell elongation and division. The findings of this study provide proteome evidence for elucidating the phosphorylation in both M. smegmatis and M. tuberculosis.
Mycobacterium smegmatis/genetics*
;
Bacterial Proteins/genetics*
;
Phosphorylation
;
Phosphoproteins/metabolism*
;
Mycobacterium tuberculosis/growth & development*
;
Proteome/metabolism*
;
Proteomics


Result Analysis
Print
Save
E-mail