1.Efficacy of Essential Trace Elements Supplementation on Mineral Composition, Sperm Characteristics, Antioxidant Status, and Genotoxicity in Testis of Tebuconazole-treated Rats.
Hajer BEN SAAD ; Fatma BEN ABDALLAH ; Intidhar BKHAIRIA ; Ons BOUDAWARA ; Moncef NASRI ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2020;33(10):760-770
Objective:
This research was performed to evaluate the effect of tebuconazole (TBZ) on reproductive organs of male rats and to assess the protective role of combined essential trace elements in alleviating the detrimental effect of TBZ on male reproductive function.
Methods:
For this purpose, 48 rats were exposed to 100 mg/kg TBZ, TBZ supplemented with zinc (Zn), selenium (Se), copper (Cu), and iron (Fe), TBZ + (Se + Zn); TBZ + Cu; or TBZ + Fe. The experiment was conducted for 30 consecutive days.
Results:
TBZ caused a significant perturbation in mineral levels and reduction in reproductive organs weights, plasma testosterone level, and testicular antioxidant enzyme activities. The TBZ-treated group also showed a significant increase in sperm abnormalities (count, motility, and viability percent), plasma follicle-stimulating hormone and luteinizing hormone concentrations, lipid peroxidation, protein oxidation, and severe DNA degradation in comparison with the controls. Histopathologically, TBZ caused testis impairments. Conversely, treatment with trace elements, in combination or alone, improved the reproductive organ weights, sperm characteristics, TBZ-induced toxicity, and histopathological modifications in testis.
Conclusion
TBZ exerts significant harmful effects on male reproductive system. The concurrent administration of trace elements reduces testis dysfunction, fertility, and toxicity induced by TBZ.
Animal Feed/analysis*
;
Animals
;
Antioxidants/metabolism*
;
Diet
;
Dietary Supplements/analysis*
;
Fungicides, Industrial/adverse effects*
;
Male
;
Minerals/metabolism*
;
Mutagenicity Tests
;
Rats
;
Rats, Wistar
;
Spermatozoa/physiology*
;
Testis/physiology*
;
Trace Elements/metabolism*
;
Triazoles/adverse effects*
2.Effects of acute ozone exposure on genotoxicity of lung cells in rats.
Ning LI ; Hu YANG ; Zhen FANG ; Ping Yu WANG ; Jie HAN ; Lei TIAN ; Jun YAN ; Zhu Ge XI ; Xiao Hua LIU
Chinese Journal of Applied Physiology 2019;35(2):97-100
OBJECTIVE:
To clarify the genotoxicity induced by acute exposure of ozone with different concentrations on pulmonary cells in rats.
METHODS:
Thirty-six Wistar rats were randomly divided into control group (filtered air exposure) and ozone exposure group (0.12 ppm, 0.5 ppm, 1.0 ppm, 2.0 ppm, 4.0 ppm) with 6 in each group. After rats were exposed to different concentrations of ozone for 4 h, lung tissues were taken and single cells were isolated. Then, 8-hydroxydeoxyguanosine (8-OHdG) was quantitatively detected by enzyme-linked immunosorbent assay. Comet assay, micronucleus test and DNA- protein cross-linking assay were used to analyze DNA and chromosome damages.
RESULTS:
Compared with the control group, the content of 8-OHdG in lung tissue was increased significantly from the ozone exposure concentration of 0.12 ppm, reaching the highest value at 0.5 ppm. With the increase of ozone exposure concentration, the tail rate of comets was increased gradually, and there was a significant dose-effect relationship. The cross-linking rate of DNA- protein was increased first and then was decreased with a maximum value at 2.0 ppm group. Although the micronucleus rate of lung cells showed an upward trend, there was no significant difference compared with the control group.
CONCLUSION
Acute exposure of ozone at low concentrations (0.12 ppm) could lead to DNA damage in the pulmonary cells of rats, while no significant chromosome damage was found even in the group with ozone concentration reached to 4 ppm.
Animals
;
Comet Assay
;
DNA Damage
;
Lung
;
cytology
;
pathology
;
Micronucleus Tests
;
Ozone
;
adverse effects
;
Random Allocation
;
Rats
;
Rats, Wistar
3.Therapeutic Targeting of the DNA Damage Response Using an ATR Inhibitor in Biliary Tract Cancer
Ah Rong NAM ; Mei Hua JIN ; Ji Eun PARK ; Ju Hee BANG ; Do Youn OH ; Yung Jue BANG
Cancer Research and Treatment 2019;51(3):1167-1179
PURPOSE: The DNA damage response (DDR) is a multi-complex network of signaling pathways involved in DNA damage repair, cell cycle checkpoints, and apoptosis. In the case of biliary tract cancer (BTC), the strategy of DDR targeting has not been evaluated, even though many patients have DNA repair pathway alterations. The purpose of this study was to test the DDR-targeting strategy in BTC using an ataxia-telangiectasia and Rad3-related (ATR) inhibitor. MATERIALS AND METHODS: A total of nine human BTC cell lines were used for evaluating anti-tumor effect of AZD6738 (ATR inhibitor) alone or combination with cytotoxic chemotherapeutic agents through MTT assay, colony-forming assays, cell cycle analyses, and comet assays. We established SNU478-mouse model for in vivo experiments to confirm our findings. RESULTS: Among nine human BTC cell lines, SNU478 and SNU869 were the most sensitive to AZD6738, and showed low expression of both ataxia-telangiectasia mutated (ATM) and p53. AZD6738 blocked p-Chk1 and p-glycoprotein and increased γH2AX, a marker of DNA damage, in sensitive cells. AZD6738 significantly increased apoptosis, G2/M arrest and p21, and decreased CDC2. Combinations of AZD6738 and cytotoxic chemotherapeutic agents exerted synergistic effects in colony-forming assays, cell cycle analyses, and comet assays. In our mouse models, AZD6738 monotherapy decreased tumor growth and the combination with cisplatin showed more potent effects on growth inhibition, decreased Ki-67, and increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling than monotherapy with each drug. CONCLUSION: In BTC, DDR targeting strategy using ATR inhibitor demonstrated promising antitumor activity alone or in combination with cytotoxic chemotherapeutic agents. This supports further clinical development of DDR targeting strategy in BTC.
Animals
;
Apoptosis
;
Ataxia Telangiectasia
;
Biliary Tract Neoplasms
;
Biliary Tract
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Line
;
Cisplatin
;
Comet Assay
;
DNA Damage
;
DNA Repair
;
DNA
;
Humans
;
Mice
;
P-Glycoprotein
4.Changes in the constituents and UV-photoprotective activity of Astragalus membranaceus caused by roasting
Jeong Yong PARK ; Ji Yeon LEE ; Hyung Don KIM ; Gwi Yeong JANG ; Kyung Hye SEO
Journal of Nutrition and Health 2019;52(5):413-421
PURPOSE: Astragalus membranaceus (AM) is an important traditional medicinal herb. Pharmacological research has indicated that AM has various physiological activities such as antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, and hepatoprotective activities. The bioactive substances responsible for the physiological activities in AM, including many antioxidant substances, change during the roasting process. This study investigated and compared the changes in the antioxidant constituents of AM caused by roasting. METHODS: DPPH (1,1-diphenyl-2-picryl hydrazyl) and ABTS⁺ (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging activities and their total phenolic content (TPC) were measured. High-performance liquid chromatography (HPLC) analysis was performed to confirm any changes in the isoflavonoids of roasted AM (R-AM),. The cell viability of UVB-induced HDF (Human dermal fibroblast) cells treated with AM and R-AM extracts was investigated. The comet assay was used to examine the inhibitory effects of R-AM extracts on DNA damage caused by oxidative stress. RESULTS: The DPPH and ABTS⁺ radical scavenging activities were 564.6±20.9 and 108.2±3.1 (IC₅₀ value) respectively, from the 2R-AM. The total phenol content was 47.80±1.40 mg GAE/g from the 1R-AM. The values of calycosin and formononetin, which are the known isoflavonoid constituents of AM, were 778.58±2.72 and 726.80±3.45 µg/g respectively, from the 2R-AM. Treatment of the HDF cells with R-AM (50 ~ 200 µg/mL) did not affect the cell viability. Furthermore, the R-AM extracts effectively protected against UVB-induced DNA damage. CONCLUSION: The findings of this study indicate that R-AM increases its isoflavonoid constituents and protects against UVB-induced DNA damage in HDF cells.
Astragalus membranaceus
;
Cell Survival
;
Chromatography, Liquid
;
Comet Assay
;
DNA Damage
;
Oxidative Stress
;
Phenol
;
Plants, Medicinal
5.Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase polymorphism.
Jeong Hwa HAN ; Hye Jin LEE ; Hee Jeong CHOI ; Kyung Eun YUN ; Myung Hee KANG
Nutrition Research and Practice 2017;11(3):214-222
BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of xenobiotics by conjugating substances with glutathione. The aim of this study is to assess the antioxidative status and the degree of DNA damage in the subclinical hypertensive patients in Korea using glutathione S-transferase polymorphisms. SUBJECTS/METHODS: We examined whether DNA damage and antioxidative status show a difference between GSTM1 or GSTT1 genotype in 227 newly diagnosed, untreated (systolic blood pressure (BP) ≥ 130 mmHg or diastolic BP ≥ 85 mmHg) subclinical hypertensive patients and 130 normotensive subjects (systolic BP < 120 mmHg and diastolic BP < 80 mmHg). From the blood of the subjects, the degree of the DNA damage in lymphocyte, the activities of erythrocyte superoxide dismutase, the catalase, and the glutathione peroxidase, the level of glutathione, plasma total radical-trapping antioxidant potential (TRAP), anti-oxidative vitamins, as well as plasma lipid profiles and conjugated diene (CD) were analyzed. RESULTS: Of the 227 subjects studied, 68.3% were GSTM1 null genotype and 66.5% were GSTT1 null genotype. GSTM1 null genotype had an increased risk of hypertension (OR: 2.104, CI: 1.38-3.35), but no significant association in GSTT1 null genotype (OR 0.982, CI: 0.62-1.55). No difference in erythrocyte activities of superoxide dismutase, catalase, or glutathione peroxidase, and plasma TRAP, CD, lipid profiles, and GSH levels were observed between GSTM1 or GSTT1 genotype. Plasma levels of α-tocopherol increased significantly in GSTT1 wild genotype (P < 0.05); however, plasma level of β-carotene increased significantly in GSTT1 null genotype (P < 0.01). DNA damage assessed by the Comet assay was significantly higher in GSTM1 null genotype than wild genotype (P < 0.05). CONCLUSIONS: These results confirm the association between GSTM1 null genotype and risk of hypertension as they suggest that GSTM1 null genotype leads to an increased oxidative stress compared with wild genotype.
Antioxidants
;
Blood Pressure
;
Catalase
;
Comet Assay
;
DNA Damage*
;
DNA*
;
Erythrocytes
;
Genotype
;
Glutathione Peroxidase
;
Glutathione Transferase*
;
Glutathione*
;
Humans
;
Hypertension
;
Korea
;
Lymphocytes*
;
Metabolic Detoxication, Phase II
;
Multigene Family
;
Oxidative Stress
;
Plasma*
;
Superoxide Dismutase
;
Vitamins
;
Xenobiotics
6.Comparison of lymphocyte DNA damage levels and total antioxidant capacity in Korean and American diet.
Min Young LEE ; Hyun A KIM ; Myung Hee KANG
Nutrition Research and Practice 2017;11(1):33-42
BACKGROUND/OBJECTIVE: This study aims to measure the in vitro antioxidant capacity of Korean diet (KD) with American diet (AD) as a control group and to examine the ex vivo DNA damage reduction effect on human lymphocytes. MATERIALS/METHODS: The KD applied in this study is the standard one-week meals for Koreans (2,000 kcal/day) suggested by 2010 Dietary Reference Intakes for Koreans. The AD, which is the control group, is a one-week menu (2,000 kcal/day) that consists of foods that Americans would commonly take in according to the National Health and Nutrition Examination Survey. The antioxidant capacity of each menu was measured by means of the total phenolic assay and 3 in vitro antioxidant activity assays (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, trolox equivalent antioxidant capacity (TEAC), Oxygen radical absorbance capacity (ORACROO·)), while the extent of ex vivo lymphocyte DNA damage was measured by means of the comet assay. RESULTS: When measured by means of TEAC assay, the in vitro antioxidant capacity of the KD of the day was higher than that of the AD (P < 0.05) while there was no significant difference in total phenolic contents and DPPH and ORAC assays. The ex vivo lymphocyte DNA damage protective effect of the KD was significantly higher than that of the AD (P < 0.01). As for the one-week menu combining the menus for 7 days, the total phenolic assay (P < 0.05) and in vitro antioxidant capacity (P < 0.001, DPPH; P < 0.01, TEAC) of the KD menu were significantly higher than those of the AD menu. Likewise, the ex vivo DNA damage reduction rate of the Korean seven-day menu was significantly higher than that of the American menu (P < 0.01). CONCLUSION: This study demonstrates that the high antioxidant capacity and DNA damage protective effect of KD, which consists generally of various plant foods, are higher than those of typical AD.
Antioxidants
;
Comet Assay
;
Diet*
;
DNA Damage*
;
DNA*
;
Humans
;
In Vitro Techniques
;
Lymphocytes*
;
Meals
;
Nutrition Surveys
;
Oxygen
;
Phenol
;
Plants
;
Recommended Dietary Allowances
7.Effects of lymphocyte DNA damage levels in Korean plant food groups and Korean diet regarding to glutathione S-transferase M1 and T1 polymorphisms.
Hyun A KIM ; Min Young LEE ; Myung Hee KANG
Journal of Nutrition and Health 2017;50(1):10-24
PURPOSE: GST (glutathione S-transferase) M1 and T1 gene polymorphisms are known to affect antioxidant levels. This study was carried out to evaluate genetic susceptibility by measuring the effect of DNA damage reduction in the Korean diet by vegetable food according to GST gene polymorphisms using the ex vivo method with human lymphocytes. METHODS: Vegetable foods in the Korean diet based the results of the KNHANES V-2 (2011) were classified into 10 food groups. A total of 84 foods, which constituted more than 1% of the total intake in each food group, were finally designated as a vegetable food in the Korean diet. The Korean diet applied in this study is the standard one-week meals for Koreans (2,000 Kcal/day) suggested by the 2010 Dietary Reference Intakes for Koreans. Ex vivo DNA damage in human lymphocytes was assessed using comet assay. RESULTS: In the Korean food group, the DNA damage protective effect of GSTM1 and GSTT1 was found to be greater in mutant type and wild-type, respectively. and the DNA damage protective effect according to the combined genotype of GSTM1 and GSTT1 was different depending on the food group. On the other hand, in Korean Diet, the DNA damage protective effect appeared to be larger in GSTM1 wild-type than in mutant type and was found to not be affected by GSTT1 genotype. CONCLUSION: These results can be used as basic data to demonstrate the superiority of the antioxidant function of Korean dietary patterns and food groups. Furthermore, it may be a starting point to begin research on customized antioxidant nutrition according to individual genes.
Comet Assay
;
Diet*
;
DNA Damage*
;
DNA*
;
Genetic Predisposition to Disease
;
Genotype
;
Glutathione Transferase*
;
Glutathione*
;
Hand
;
Humans
;
Lymphocytes*
;
Meals
;
Methods
;
Plants*
;
Recommended Dietary Allowances
;
Vegetables
8.Comparison of antioxidant activity and prevention of lymphocyte DNA damage by fruit and vegetable juices marketed in Korea.
Miran CHO ; Hye Jin LEE ; Myung Hee KANG ; Hyesun MIN
Journal of Nutrition and Health 2017;50(1):1-9
PURPOSE: Fruit and vegetable juices are known to be rich sources of antioxidants, which have beneficial effects on diseases caused by oxidative stress. The purpose of this study was to directly compare the antioxidant activities of fruit and vegetable juices marketed in Korea. METHODS: We analyzed four fruit juices, two vegetable juices, two yellow-green juices, and six mixed vegetable juices. Antioxidant activities were analyzed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) test, and oxygen radical absorbance capacity (ORAC) assay. Protective effects against DNA damage were determined using an ex vivo comet assay with human lymphocytes. RESULTS: DPPH radical scavenging activities were in the following order: blueberry juice > mixed vegetable C juice > kale juice > mixed vegetable P juice > grape juice. ABTS radical scavenging activities were in the following order: blueberry juice > mixed vegetable C juice > grape juice > mixed vegetable P juice > kale juice. Peroxyl radical scavenging activities as assessed by ORAC assay were in the following order: blueberry juice > kale juice > mixed vegetable C juice > grape juice. Grape or blueberry juice showed strong abilities to prevent DNA damage in lymphocytes, and the difference between them was not significant according to the GSTM1/GSTT1 genotype. CONCLUSION: Antioxidant activities of fruit and vegetable juices and ex vivo DNA protective activity increased in the order of blueberry juice, grape juice, and kale juice, although the rankings were slightly different. Therefore, these juices rich in polyphenols and flavonoids deserve more attention for their high antioxidant capacity.
Antioxidants
;
Blueberry Plant
;
Brassica
;
Comet Assay
;
DNA Damage*
;
DNA*
;
Flavonoids
;
Fruit and Vegetable Juices*
;
Fruit*
;
Genotype
;
Humans
;
Korea*
;
Lymphocytes*
;
Oxidative Stress
;
Oxygen
;
Polyphenols
;
Vegetables
;
Vitis
9.Evaluation of in vitro and in vivo genotoxicity of Angelica acutiloba in a standard battery of assays.
Jun Won YUN ; Yun Soon KIM ; Euna KWON ; Seung Hyun KIM ; Ji Ran YOU ; Hyeon Hoe KIM ; Jeong Hwan CHE ; Byeong Cheol KANG
Laboratory Animal Research 2017;33(3):231-236
Among three representative species of Angelica found in Asian countries, including Korea, China, and Japan, Angelica acutiloba (AA) has been used as traditional herbal medicine with antitumor, anti-inflammatory, anti-obesity, and anti-diabetes activities. In this study, the potential genotoxicity and mutagenicity of the AA extract were examined in a battery of in vitro and in vivo tests (bacterial reverse mutation assay, in vitro chromosomal aberrations assay, and in vivo micronucleus assay) in accordance with the test guidelines for toxicity testing developed by the Organization for Economic Cooperation and Development. Upon testing in the bacterial mutation assay (Ames test) using five Salmonella typhimurium TA98, TA100, TA102, TA1535 and TA1537, no significant increase the number of revertant colonies in the metabolic activation system and non-activation system was noted in the AA extract groups. Also, in the chromosome aberration test, the AA extract did not cause chromosomal aberration with or without metabolic activation by S9 mix. A bone marrow micronucleus test of mice demonstrated that the incidence of micronucleated polychromatic erythrocytes in the AA extract groups (500, 1000 and 2000 mg/kg BW) was equivalent to that of the negative control group. Based on these results from a standard battery of assays, the AA extract was concluded to have no genotoxic at the proper dose.
Activation, Metabolic
;
Angelica*
;
Animals
;
Asian Continental Ancestry Group
;
Bone Marrow
;
China
;
Chromosome Aberrations
;
Erythrocytes
;
Herbal Medicine
;
Humans
;
In Vitro Techniques*
;
Incidence
;
Japan
;
Korea
;
Medicine, Traditional
;
Mice
;
Micronucleus Tests
;
Organisation for Economic Co-Operation and Development
;
Salmonella typhimurium
;
Toxicity Tests
10.Morphological transformation induced by silver nanoparticles in a Balb/c 3T3 A31-1-1 mouse cell model to evaluate in vitro carcinogenic potential
Wunhak CHOO ; Byeonghak MOON ; Sulhwa SONG ; Seung Min OH
Environmental Health and Toxicology 2017;32(1):2017016-
Carcinogenesis is a complex process involved in genotoxic and non-genotoxic pathways. The carcinogenic potential of silver nanoparticles (AgNPs) has been predicted by examining their genotoxic effects using several in vitro and in vivo models. However, there is no little information regarding the non-genotoxic effects of AgNPs related to carcinogenesis. The in vitro cell transformation assay (CTA) provides specific and sensitive evidence for predicting the tumorigenic potential of a chemical, which cannot be obtained by genotoxicity testing. Therefore, we carried out CTA in Balb/c 3T3 A31-1-1 cells to evaluate the carcinogenic potential of AgNPs. Colony-forming efficiency and crystal violet assays were carried out to determine the cytotoxicity of AgNPs. A cytokinesis-block micronucleus (CBMN) assay and CTA were performed using Balb/c 3T3 A31-1-1 cells to predict the in vitro carcinogenic potential of AgNPs. In the CBMN assay, AgNPs (10.6 μg/mL) induced a significant increase in micronucleus formation indicating a genotoxic effect. Thus, AgNPs could be an initiator of carcinogenesis. In the CTA, used to assess the carcinogenic potential of AgNPs, cells exposed to AgNPs for 72 hours showed significantly induced morphological neoplastic transformation at all tested doses (0.17, 0.66, 2.65, 5.30, and 10.60 μg/mL), and the transformation frequency was significantly increased in a dose-dependent manner. These results indicate that short-term exposure (72 hours) to AgNPs had in vitro carcinogenetic potency in Balb/c 3T3 A31-1-1 cells.
Animals
;
Carcinogenesis
;
Gentian Violet
;
In Vitro Techniques
;
Mice
;
Mutagenicity Tests
;
Nanoparticles
;
Silver

Result Analysis
Print
Save
E-mail