1.Exploring the multifaceted relationship between walking and chronic low back pain in adults: Perceptions, experiences, barriers, facilitators, behaviors, and motivations - A systematic review and meta-aggregation protocol
Valentin Dones Ill ; Donald Manlapaz ; Hans Paolo Alarde ; Moira Aleah Francess Dulnuan ; Rudolph Kyle Elefante ; Janna Crystal Koa ; Viktoria Nicole Mendoa ; Adriel Quinones
Philippine Journal of Allied Health Sciences 2025;9(1):61-67
BACKGROUND
Walking is widely recognized for its benefits in pain management, disability reduction, and psychological well-being, primarily due to its cost-effectiveness and accessibility. However, comprehensive qualitative insights into the full extent of its benefits remain insufficient. Chronic low back pain (CLBP) significantly impairs daily activities, requiring a multifaceted intervention approach, as advocated by the Biopsychosocial (BPS) model and the International Classification of Functioning, Disability, and Health (ICF) framework.
OBJECTIVESThis systematic review aims to evaluate the perceptions and experiences related to walking among adults suffering from CLBP, understand the barriers and facilitators influencing walking behaviors, analyze behavioral patterns, and examine internal motivators for walking.
METHODSThis systematic review will include both published and unpublished qualitative studies with participants aged >18 with CLBP persisting > 3 months, where walking is utilized as the primary or secondary intervention. Databases, including PubMed, EBSCO Host, Science Direct, ProQuest, MEDLINE, Epistemonikos, Cochrane Database, and Web of Science, will be searched without language or year restrictions. The screening will involve an independent dual review of the title/abstract and full texts, followed by a critical appraisal. Data extraction and synthesis will employ a meta-aggregation approach, with findings assessed via the ConQual approach.
EXPECTED RESULTSSynthesized findings will guide evidence-based practice. Recommendations will provide actionable insights to address gaps in qualitative research on walking, promoting a holistic, patient-centered approach to treatment.
PROSPERO REGISTRATION NUMBERCRD42024509069.
Human ; Pain Management ; Adult ; Walking ; Social Factors
2.Efficacy of ultrasound-guided acupuncture at myofascial trigger points on improving gait function in patients with post-stroke foot drop.
Qingying LENG ; Xuena ZHENG ; Hui ZHONG ; Yanrou XIE ; Leyi LU ; Yongliang GUO ; Churong LIU
Chinese Acupuncture & Moxibustion 2025;45(2):146-150
OBJECTIVE:
To evaluate the clinical efficacy of ultrasound-guided acupuncture at myofascial trigger points (MTrPs) on treating post-stroke foot drop.
METHODS:
Sixty patients with post-stroke foot drop were randomly assigned to an observation group 1 (20 cases, 1 case dropped out), an observation group 2 (20 cases, 2 casses dropped out), and a control group (20 cases). The control group received conventional acupuncture at Yanglingquan (GB34), Jiexi (ST41), Taichong (LR3), Zusanli (ST36), Xuanzhong (GB39), and Qiuxu (GB40) on the affected side, once daily. In addition to the treatment of the control group , the observation group 1 received acupuncture at the tibialis anterior and gastrocnemius MTrPs, once every other day, while the observation group 2 received ultrasound-guided acupuncture at the tibialis anterior and gastrocnemius MTrPs, once every other day. All groups were treated for two weeks. Three-dimensional gait analysis was performed using an infrared motion capture system, and the Holden walking scale was used to evaluate walking ability before and after treatment in the three groups.
RESULTS:
Compared before treatment, the patients in the observation groups 1 and 2 showed increased walking speed (P<0.05, P<0.01), and improved Holden walking scale grades (P<0.05, P<0.01) after treatment; the patients in the observation group 2 also showed increased ankle dorsiflexion angles (P<0.05). The walking speeds of the observation groups 1 and 2 were faster than those of the control group after treatment (P<0.05), the Holden walking scale grade in the observation group 2 was superior to that in the control group (P<0.05).
CONCLUSION
The ultrasound-guided acupuncture at MTrPs could effectively improve gait function in post-stroke foot drop patients.
Humans
;
Acupuncture Therapy
;
Male
;
Female
;
Middle Aged
;
Stroke/physiopathology*
;
Aged
;
Trigger Points/physiopathology*
;
Gait
;
Acupuncture Points
;
Adult
;
Ultrasonography
;
Treatment Outcome
;
Gait Disorders, Neurologic/etiology*
3.Development and validation of the sarcopenia composite index: A comprehensive approach for assessing sarcopenia in the ageing population.
Hsiu-Wen KUO ; Chih-Dao CHEN ; Amy Ming-Fang YEN ; Chenyi CHEN ; Yang-Teng FAN
Annals of the Academy of Medicine, Singapore 2025;54(2):101-112
INTRODUCTION:
The diagnosis of sarcopenia relies on key indicators such as handgrip strength, walking speed and muscle mass. Developing a composite index that integrates these measures could enhance clinical evaluation in older adults. This study aimed to standardise and combine these metrics to establish a z score for the sarcopenia composite index (ZoSCI) tailored for the ageing population. Additionally, we explore the risk factors associated with ZoSCI to provide insights into early prevention and intervention strategies.
METHOD:
This retrospective study analysed data between January 2017 and December 2021 from an elderly health programme in Taiwan, applying the Asian Working Group for Sarcopenia criteria to assess sarcopenia. ZoSCI was developed by standardising handgrip strength, walking speed and muscle mass into z scores and integrating them into a composite index. Receiver operating characteristic (ROC) curve analysis was used to determine optimal cut-off values, and multiple regression analysis identified factors influencing ZoSCI.
RESULTS:
Among the 5047 participants, the prevalence of sarcopenia was 3.7%, lower than the reported global prevalence of 3.9-15.4%. ROC curve analysis established optimal cut-off points for distinguishing sarcopenia in ZoSCI: -1.85 (sensitivity 0.91, specificity 0.88) for males and -1.97 (sensitivity 0.93, specificity 0.88) for females. Factors associated with lower ZoSCI included advanced age, lower education levels, reduced exercise frequency, lower body mass index and creatinine levels.
CONCLUSION
This study introduces ZoSCI, a new compo-site quantitative indicator for identifying sarcopenia in older adults. The findings highlight specific risk factors that can inform early intervention. Future studies should validate ZoSCI globally, with international collaborations to ensure broader applicability.
Humans
;
Sarcopenia/physiopathology*
;
Male
;
Aged
;
Female
;
Retrospective Studies
;
Hand Strength
;
Taiwan/epidemiology*
;
ROC Curve
;
Aged, 80 and over
;
Risk Factors
;
Walking Speed
;
Geriatric Assessment/methods*
;
Prevalence
;
Muscle, Skeletal
;
Middle Aged
4.Effects of visual impairment and its restoration on electroencephalogram during walking in aged females.
Mingxin AO ; Hongshi HUANG ; Xuemin LI ; Yingfang AO
Chinese Medical Journal 2025;138(6):738-744
BACKGROUND:
Visual input significantly influences cerebral activity related to locomotor navigation, although the underlying mechanism remains unclear. This study aimed to analyze the effects of chronic visual impairment and its rehabilitation on sensorimotor integration during level walking in patients with age-related cataract.
METHODS:
This prospective case series enrolled 14 female patients (68.4 ± 4.7 years) with age-related cataract, scheduled for consecutive cataract surgeries at the Department of Ophthalmology in Peking University Third Hospital from June 2019 to June 2020. Electroencephalogram (EEG) signals during level walking were recorded using a portable EEG system before and 4 weeks after visual restoration. Walking speed was assessed using the Footscan system. Spectral power of the theta and alpha bands was analyzed with repeated-measures analysis of variance, with Assignment (rest and walking), Phase (preoperative and postoperative), and Electrode sites (F3, Fz, F4, O1, and O2) as within-subject factors.
RESULTS:
Compared to the visual impairment state, theta band power significantly decreased after visual restoration (13.16 ± 1.58 μV 2vs. 23.65 ± 3.48 μV 2 , P = 0.018). Theta activity was notably reduced during walking (17.24 ± 2.43 μV 2vs. 37.86 ± 6.62 μV 2 , P = 0.017), while theta power at rest was not significantly different between the two phases (9.44 ± 1.24 μV 2vs. 9.08 ± 1.74 μV 2 , P = 0.864). Changes in walking speed were correlated with alterations in theta power at electrode sites of O1 ( r = -0.574, P = 0.032) and O2 ( r = -0.648, P = 0.012). Alpha band power remained stable during walking and was unaffected by visual status.
CONCLUSIONS
Chronic visual impairment from age-related cataract triggers enhanced cerebral activation of sensorimotor integration to compensate for visual decline during locomotion. This cerebral over-activation is effectively alleviated by visual restoration.
Humans
;
Female
;
Walking/physiology*
;
Aged
;
Electroencephalography/methods*
;
Prospective Studies
;
Middle Aged
;
Cataract/physiopathology*
;
Vision Disorders/physiopathology*
5.Alterations of diffusion kurtosis measures in gait-related white matter in the "ON-OFF state" of Parkinson's disease.
Xuan WEI ; Shiya WANG ; Mingkai ZHANG ; Ying YAN ; Zheng WANG ; Wei WEI ; Houzhen TUO ; Zhenchang WANG
Chinese Medical Journal 2025;138(9):1094-1102
BACKGROUND:
Gait impairment is closely related to quality of life in patients with Parkinson's disease (PD). This study aimed to explore alterations in brain microstructure in PD patients and healthy controls (HCs) and to identify the correlation of gait impairment in the ON and OFF states of patients with PD, respectively.
METHODS:
We enrolled 24 PD patients and 29 HCs from the Movement Disorders Program at Beijing Friendship Hospital Capital Medical University between 2019 and 2020. We acquired magnetic resonance imaging (MRI) scans and processed the diffusion kurtosis imaging (DKI) images. Preprocessing of diffusion-weighted data was performed with Mrtrix3 software, using a directional distribution function to track participants' main white matter fiber bundles. Demographic and clinical characteristics were recorded. Quantitative gait and clinical scales were used to assess the status of medication ON and OFF in PD patients.
RESULTS:
The axial kurtosis (AK), mean kurtosis (MK), and radial kurtosis (RK) of five specific white matter fiber tracts, the bilateral corticospinal tract, left superior longitudinal fasciculus, left anterior thalamic radiation, forceps minor, and forceps major were significantly higher in PD patients compared to HCs. Additionally, the MK values were negatively correlated with Timed Up and Go Test (TUG) scores in both the ON and OFF in PD patients. Within the PD group, higher AK, MK, and RK values, whether the patients were ON or OFF, were associated with better gait performance (i.e., higher velocity and stride length).
CONCLUSIONS
PD exhibits characteristic regional patterns of white matter microstructural degradation. Correlations between objective gait parameters and DKI values suggest that dopamine-responsive gait function depends on preserved white matter microstructure. DKI-based Tract-Based Spatial Statistics (TBSS) analysis may serve as a tool for evaluating PD-related motor impairments (e.g., gait impairment) and could yield potential neuroimaging biomarkers.
Humans
;
Parkinson Disease/diagnostic imaging*
;
White Matter/physiopathology*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Gait/physiology*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Diffusion Tensor Imaging/methods*
6.Genders characteristics of aerobic endurance exercise performance and autonomic regulation in cold environments.
Peng HAN ; Yun-Ran WANG ; Yuan-Yuan LYU ; Li ZHAO
Acta Physiologica Sinica 2025;77(1):25-34
This study examined the regulatory effects of autonomic nervous system on aerobic endurance exercise performance in cold exposure, focusing on heart rate recovery (HRR) and heart rate variability (HRV) across genders. Thirty participants (17 males and 13 females) from a university track endurance program, classified as exercise grade II or above, underwent monitoring of HRV in time domain, frequency domain, nonlinear correlation indices and 1 min HRR. Measurements were taken before, during, and after aerobic endurance exercise in cold and normal environments, respectively. The results were as follows. (1) The duration of aerobic endurance exercise completed by all the subjects in cold environment was significantly increased compared with that in normal environment. The 1 min HRR after aerobic endurance exercise in cold environment was significantly lower than that in normal environment, and the decrease in the males was significantly higher than that in the females. (2) The time domain analysis results showed that, prior to the aerobic endurance exercise, there were no significant difference of standard deviation from the mean value of normal to normal intervals (SDNN), root mean square of successive differences (RMSSD), and percentage of adjacent normal-to-normal intervals differing by more than 50 ms (pNN50) between cold and normal environments. During aerobic endurance exercise in cold environment, SDNN, RMSSD and pNN50 were significantly higher than those in normal environment, with the females showing significantly greater increases compared with those of the males. The levels of SDNN, RMSSD and pNN50 in the males at different time points under different environments were significantly lower than those in the quiet state; The levels of SDNN and RMSSD of the females at different time points under different environments were significantly lower than those in the quiet state, while the pNN50 at different time points under cold environments was significantly lower than that in the quiet state. (3) Frequency domain analysis results showed that, prior to the aerobic endurance exercise, there was no significant difference of high frequency normalized units [HF (n.u.)], low frequency normalized units [LF (n.u.)] and LF/HF ratio between cold and normal environments. During aerobic endurance exercise in cold environment, the levels of HF (n.u.) significantly increased compared to normal environment in the females, while LF (n.u.) and LF/HF ratio levels significantly decreased compared to normal environments. The levels of HF (n.u.), LF (n.u.) and LF/HF ratio of different genders at different time points in the different environments showed no significant changes, compared to those in the quiet state. (4) Non-linear analysis results showed a significant increase in SD1 (standard deviation perpendicular to the line-of-identity)/SD2 (standard deviation along the line-of-identity) ratio during aerobic endurance exercise in cold environment in the females, while no significant changes were observed in the males. SD1/SD2 ratios in the males at different time points and in the females at 1 min under cold environments were significantly higher than those in the quiet state. These findings suggest that aerobic endurance performance increases during cold exposure, accompanied by gender-specific differences in the regulation of autonomic nervous system. Females exhibit higher vagal activity and faster autonomic nervous system recovery compared to males.
Humans
;
Male
;
Female
;
Heart Rate/physiology*
;
Cold Temperature
;
Exercise/physiology*
;
Physical Endurance/physiology*
;
Autonomic Nervous System/physiology*
;
Young Adult
;
Adult
;
Sex Factors
7.The pleiotropic role of MEF2C in bone tissue development and metabolism.
Hao-Jie XIAO ; Rui-Qi HUANG ; Sheng-Jie LIN ; Jin-Yang LI ; Xue-Jie YI ; Hai-Ning GAO
Acta Physiologica Sinica 2025;77(2):374-384
The development of bone in human body and the maintenance of bone mass in adulthood are regulated by a variety of biological factors. Myocyte enhancer factor 2C (MEF2C), as one of the many factors regulating bone tissue development and balance, has been shown to play a key role in bone development and metabolism. However, there is limited systematic analysis on the effects of MEF2C on bone tissue. This article reviews the role of MEF2C in bone development and metabolism. During bone development, MEF2C promotes the development of neural crest cells (NC) into craniofacial cartilage and directly promotes cartilage hypertrophy. In terms of bone metabolism, MEF2C exhibits a differentiated regulatory model across different types of osteocytes, demonstrating both promoting and other potential regulatory effects on bone formation, with its stimulating effect on osteoclasts being determined. In view of the complex roles of MEF2C in bone tissue, this paper also discusses its effects on some bone diseases, providing valuable insights for the physiological study of bone tissue and strategies for the prevention of bone diseases.
Humans
;
MEF2 Transcription Factors/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Bone Development/physiology*
;
Osteogenesis/physiology*
;
Myogenic Regulatory Factors/physiology*
8.Research progress on molecular mechanism of resistance training-induced skeletal muscle hypertrophy: the crucial role of mTOR signaling.
Acta Physiologica Sinica 2025;77(3):573-586
Resistance training promotes protein synthesis and hypertrophy, enhancing strength of skeletal muscle through the activation of the mammalian target of rapamycin (mTOR) and the subsequent increases of ribosome biogenesis and translation capacity. Recent studies indicate that resistance training has positive effects on physical fitness and illness treatment, yet the mechanisms underlying hypertrophic adaptation remain insufficiently understood. Human studies focused on the correlation between mTOR signals and hypertrophy-related protein production, while animal research demonstrated that mTOR complex 1 (mTORC1) is the main regulator of resistance training induced-hypertrophy. A number of upstream factors of mTORC1 have been identified, while the downstream mechanisms involved in the resistance training induced-hypertrophy are rarely studied. mTORC1 regulates the activation of satellite cells, which fuse with pre-existing fibers and contribute to hypertrophic response to resistance training. This article reviews the research progress on the mechanism of skeletal muscle hypertrophy caused by resistance training, analyzes the role of mTOR-related signals in the adaptation of skeletal muscle hypertrophy, and aims to provide a basis for basic research on muscle improvements through resistance training.
TOR Serine-Threonine Kinases/physiology*
;
Resistance Training
;
Humans
;
Signal Transduction/physiology*
;
Muscle, Skeletal/physiology*
;
Hypertrophy
;
Animals
;
Mechanistic Target of Rapamycin Complex 1
9.Effects of resistance combined with aerobic chrono-exercise on common carotid artery elasticity and hemodynamics in young men.
Miao-Xin JIAO ; Bing-Yi SHEN ; Hai-Bin LIU ; Li-Hong CHEN ; Guang-Rui YANG
Acta Physiologica Sinica 2025;77(4):741-751
The purpose of the present study was to investigate the effects of resistance combined with aerobic chrono-exercise on the common carotid artery elasticity and hemodynamics. 24 healthy young men (21.96±0.43 years old) underwent a single acute resistance combined with aerobic exercise intervention at eight time periods (6, 8, 10, 12, 14, 16, 18, and 20 o'clock). The axial flow velocity and diameter waveforms of the common carotid artery were measured, and the hemodynamics were calculated using the classical hemodynamic theory before exercise, immediately after exercise, 10 min and 20 min after exercise. The results showed that during exercise recovery, systolic and mean pressures decreased more markedly after exercise at 8 o'clock (P < 0.05); At 20 min post-exercise, arterial stiffness index and pressure-strain elastic modulus after exercise at 6 o'clock were reduced compared with the resting state, but were significantly elevated after exercise at 20 o'clock (P < 0.05). Immediately after exercise, the pressure rise was higher after exercise at 6 o'clock and the mean wall shear stress was higher after exercise at 20 o'clock (P < 0.05). These results suggest that resistance combined with aerobic chrono-exercise produces different effects on common carotid artery hemodynamics in young men. A single acute session of resistance combined with aerobic exercise at 8 o'clock is more effective in lowering blood pressure. Exercise at 6 o'clock is beneficial to improve arterial elasticity but is not recommended for young male individuals with cardiovascular disease risks because of the excessive increase in blood pressure immediately after exercise. Exercise at 20 o'clock is more effective in improving wall shear stress but is accompanied by elevated arterial stiffness indices and pressure-strain elastic modulus. These results provide a scientific basis for healthy young men in choosing the time of exercise by exploring the common carotid artery elasticity and hemodynamic-related indices.
Humans
;
Male
;
Young Adult
;
Exercise/physiology*
;
Carotid Artery, Common/physiology*
;
Hemodynamics/physiology*
;
Vascular Stiffness/physiology*
;
Elasticity
;
Resistance Training
;
Adult
10.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*


Result Analysis
Print
Save
E-mail