1.Genetic analysis and reproductive intervention of 7 families with gonadal mosaicism for Duchenne muscular dystrophy.
Bodi GAO ; Xiaowen YANG ; Xiao HU ; Wenbing HE ; Xiaomeng ZHAO ; Fei GONG ; Juan DU ; Qianjun ZHANG ; Guangxiu LU ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2023;40(4):423-428
OBJECTIVE:
To explore the genetic basis for 7 families with gonadal mosaicism for Duchenne muscular dystrophy (DMD).
METHODS:
For the 7 families presented at the CITIC Xiangya Reproductive and Genetic Hospital from September 2014 to March 2022, clinical data were collected. Preimplantation genetic testing for monogenic disorders (PGT-M) was carried out for the mother of the proband from family 6. Peripheral venous blood samples of the probands, their mothers and other patients from the families, amniotic fluid samples from families 1 ~ 4 and biopsied cells of embryos cultured in vitro from family 6 were collected for the extraction of genomic DNA. Multiplex ligation-dependent probe amplification (MLPA) was carried out for the DMD gene, and short tandem repeat (STR)/single nucleotide polymorphism (SNP)-based haplotypes were constructed for the probands, other patients, fetuses and embryos.
RESULTS:
The results of MLPA showed that the probands and the fetuses/probands' brothers in families 1 ~ 4, 5, 7 had carried the same DMD gene variants, whilst the probands' mothers were all normal. The proband in family 6 carried the same DMD gene variant with only 1 embryo (9 in total) cultured in vitro, and the DMD gene of the proband's mother and the fetus obtained through the PGT-M were normal. STR-based haplotype analysis showed that the probands and the fetuses/probands' brothers in families 1 ~ 3 and 5 have inherited the same maternal X chromosome. SNP-based haplotype analysis showed that the proband from family 6 has inherited the same maternal X chromosome with only 1 embryo (9 in total) cultured in vitro. The fetuses in families 1 and 6 (via PGT-M) were both confirmed to be healthy by follow up, whilst the mothers from families 2 and 3 had chosen induced labor.
CONCLUSION
Haplotype analysis based on STR/SNP is an effective method for judging gonad mosaicism. Gonad mosaicisms should be suspected for women who have given births to children with DMD gene variants but with a normal peripheral blood genotype. Prenatal diagnosis and reproductive intervention may be adapted to reduce the births of further affected children in such families.
Male
;
Pregnancy
;
Child
;
Humans
;
Female
;
Muscular Dystrophy, Duchenne/diagnosis*
;
Dystrophin/genetics*
;
Mosaicism
;
Exons
;
Prenatal Diagnosis/methods*
;
Nucleotides
2.Genetic testing and prenatal diagnosis of 671 Chinese pedigrees affected with Duchenne/Becker muscular dystrophy.
Shikun LUO ; Wenbin HE ; Xiaomeng ZHAO ; Xiaowen YANG ; Bodi GAO ; Shuangfei LI ; Juan DU ; Qianjun ZHANG ; Yueqiu TAN ; Guangxiu LU ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2022;39(9):925-931
OBJECTIVE:
To summarize the genetic characteristics of 671 Chinese pedigrees affected with Duchenne/Becker muscular dystrophy (DMD/BMD).
METHODS:
Clinical data of the pedigrees were collected. Multiplex PCR, multiple ligation dependent probe amplification (MLPA), next generation sequencing (NGS), Sanger sequencing and long read sequencing were used to detect the variant of DMD gene in the probands and their mothers, and prenatal diagnosis was provided for high risk pregnant women.
RESULTS:
Among 178 pedigrees analyzed by multiplex PCR, 44 variants of the DMD gene were detected, with the genetic diagnosis attained in 110 pedigrees. Among 493 pedigrees analyzed by MLPA in combination with NGS or Sanger sequencing, 294 pathogenic/possible pathogenic variants were identified, among which 45 were unreported previously, and the genetic diagnosis attained in 484 pedigrees. Structural variants of the DMD gene were identified in two pedigrees by long-read sequencing. Among 444 probands, 341 have inherited the DMD gene variant from their mothers (76.8%). Among 390 women with a high-risk, 339 have opted to have natural pregnancy and 51 chose preimplantation genetic testing for monogenetic disease (PGT-M). The detection rate of neonatal patients and carriers following natural pregnancy was significantly higher than that for PGT-M.
CONCLUSION
Combined application of MLPA, NGS, Sanger sequencing and long-read sequencing is an effective strategy to detect DMD/BMD. PGT-M can effectively reduce the risk of fetuses. Above finding has expanded the spectrum of DMD gene variants and provided a basis for reproductive intervention for pregnancies with a high risk for DMD/BMD.
China
;
Dystrophin/genetics*
;
Exons
;
Female
;
Genetic Testing
;
Humans
;
Infant, Newborn
;
Multiplex Polymerase Chain Reaction
;
Muscular Dystrophy, Duchenne/genetics*
;
Mutation
;
Pedigree
;
Pregnancy
;
Prenatal Diagnosis
3.Diagnosis of a patient with adjacent gene deletion syndrome with DMD complete deletion type of Duchenne muscular dystrophy.
Lina LIU ; Li WANG ; Zhihui JIAO ; Xiangdong KONG
Chinese Journal of Medical Genetics 2021;38(9):869-872
OBJECTIVE:
To identify the etiology of a patient with severe symptoms of DMD and to trace its pathogenic gene, so as to provide a basis for genetic counseling and clinical intervention.
METHODS:
Multiple ligation-dependent probe amplification (MLPA) technique was used to analyze exon deletion/repetitive variant of DMD gene, and further analysis was performed by chromosome G-banding, fluorescence in situ hybridization (FISH) and SNP array analysis.
RESULTS:
The MLPA results of the proband showed that the exon 1-79 of DMD gene were deleted, the G-banding karyotype of blood sample was 46, XY, and the deletion of the short arm of X chromosome was found by FISH. SNP array results showed that 5.8Mb (29 628 158-35 434 714) deletion occurred in the Xp21.2p21.1 region of X chromosome, and the patient was diagnosed as the contiguous deletion syndrome involving the genes of IL1RAPL, MAGEB1-4, ROB, CXorf2, GM, AP3K7IP, FTHL1, DMD, FAM47A, TMEM47, and FAM47B.
CONCLUSION
The exact pathogenic site of this family is the deletion of 5.8 Mb (29 628 158-35 434 714) in the Xp21.2p21.1 region of X chromosome, which can be used for prenatal diagnosis. High resolution SNP array technique plays an important role in detecting potential chromosome abnormalities in patients.
Dystrophin/genetics*
;
Exons
;
Female
;
Gene Deletion
;
Humans
;
In Situ Hybridization, Fluorescence
;
Muscular Dystrophy, Duchenne/genetics*
;
Pregnancy
;
Prenatal Diagnosis
4.Carrier screening model for Duchenne muscular dystrophy for women of reproductive age based on a pre-pregnancy birth defect control platform.
Jinxian ZHENG ; Shuai HAN ; Wen YE ; Shulie YAO ; Ming QI ; Jianfen CHEN ; Hong XU
Chinese Journal of Medical Genetics 2021;38(5):485-487
OBJECTIVE:
To establish a screening model for females of reproductive age carrying Duchenne muscular dystrophy (DMD) variants based on a current community health examination platform.
METHODS:
A total of 61 870 participants were recruited between October 2017 and October 2019. Serum creatine kinase (CK) was measured with a Roche Cobasc 701/702 using an enzymatic rate method. Genetic testing was offered to those with a CK level of ≥ 200 U/L. For carriers of DMD variants, genetic counseling and follow up were provided.
RESULTS:
For the 61 870 females participating in the program, 1078 were found with raised serum CK (≥ 200 U/L), of which 618 (57.33%) accepted CK re-measurement after at least a two-week interval. One hundred and twenty cases were found with sustained serum CK elevation, of which 6 were confirmed to be definite DMD carriers regardless of family history. Genetic testing was provided to 33 females with a family history for DMD, and 13 were determined as definite carriers. An affected fetus was detected by prenatal diagnosis. After genetic counseling, the parents had opted induced abortion.
CONCLUSION
Large-scale DMD carrier screening through a three-step approach based on the current community health examination platform is both feasible and cost effective.
Female
;
Genetic Carrier Screening
;
Genetic Counseling
;
Genetic Testing
;
Humans
;
Muscular Dystrophy, Duchenne/genetics*
;
Pregnancy
;
Prenatal Diagnosis
5.Germinal mosaicism for partial deletion of the Dystrophin gene in a family affected with Duchenne muscular dystrophy.
Hai XIAO ; Zhaojing ZHANG ; Tao LI ; Qian ZHANG ; Qiannan GUO ; Dong WU ; Hongdan WANG ; Mengting ZHANG ; Yue GAO ; Shixiu LIAO
Chinese Journal of Medical Genetics 2019;36(10):1015-1018
OBJECTIVE:
To carry out genetic testing and prenatal diagnosis for a family affected with Duchenne muscular dystrophy (DMD).
METHODS:
Multiplex ligation dependent probe amplification (MLPA) was used to detect potential deletion and duplication of the Dystrophin gene. Haplotype analysis was performed using five short tandem repeat polymorphism loci (3'-STR, 5'-STR, 45-STR, 49-STR, 50-STR of the DMD gene.
RESULTS:
A same deletional mutation (exons 51-55) of the DMD gene was detected in two brothers but not in their mother. The patients and fetus have inherited different haplotypes of the Dystrophin gene from their mother, suggesting that the fetus was unaffected.
CONCLUSION
The mother was very likely to harbor germline mosaicism for the Dystrophin gene variant. Genetic testing of peripheral blood samples cannot rule out germline mosaicism in the mother. Prenatal diagnosis should be provided for subsequent pregnancies in this family.
Dystrophin
;
genetics
;
Exons
;
Female
;
Gene Deletion
;
Germ-Line Mutation
;
Humans
;
Male
;
Mosaicism
;
Muscular Dystrophy, Duchenne
;
genetics
;
Pregnancy
;
Prenatal Diagnosis
6.Mutation analysis and prenatal diagnosis for 50 pedigrees affected with Duchenne/Becker muscular dystrophy.
Huanzheng LI ; Chenyang XU ; Yijian MAO ; Jinfang LU ; Yanbao XIANG ; Xueqin XU ; Shaohua TANG
Chinese Journal of Medical Genetics 2018;35(2):169-174
OBJECTIVETo establish individualized prenatal diagnosis program for families affected with Duchenne/Becker muscular dystrophy (DMD/BMD) and different clinical background using a variety of methods.
METHODSMultiplex ligation-dependent probe amplification (MLPA) was performed on 50 patients suspected for DMD/BMD. For single exon deletions of the DMD gene, PCR was used for validating the results. For those without any deletion or duplication, Sanger sequencing was used to screen for DMD gene mutations in the children and their mothers. Prenatal genetic testing was provided to female carriers using chorionic villus, amniocentesis or cord blood samples. To ensure the accuracy of diagnosis, all prenatal specimens were also subjected to linkage analysis.
RESULTSAmong the 50 patients with DMD/BMD, 23 harbored large deletions, 11 only had single exon deletions, 10 harbored duplications, and 5 had small scare mutations. No mutation was detected in one family. For 37 women undergoing prenatal diagnosis, 10 fetuses were identified as affected males, 6 were female carriers, while 21 were not found to carry any mutation. Testing of creatine kinase was consistent with the results of prenatal diagnosis. For a patient harboring exon 51 deletion, the same mutation was found in a fetus but not in their mother. The proband and fetus had inherited the same haplotype, which suggested that the mother probably has germline mosaicism for the mutation.
CONCLUSIONApplication of individualized methods for analyzing pregnant women with different clinical background can minimize the risk for giving birth to further children affected with DMD/BMD.
Adolescent ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exons ; Female ; Humans ; Male ; Multiplex Polymerase Chain Reaction ; Muscular Dystrophy, Duchenne ; diagnosis ; genetics ; Mutation ; Pedigree ; Pregnancy ; Prenatal Diagnosis
7.Application of targeted capture technology and next generation sequencing in molecular diagnosis of inherited myopathy.
Xiaona FU ; Aijie LIU ; Haipo YANG ; Cuijie WEI ; Juan DING ; Shuang WANG ; Jingmin WANG ; Yun YUAN ; Yuwu JIANG ; Hui XIONG
Chinese Journal of Pediatrics 2015;53(10):741-746
OBJECTIVETo elucidate the usefulness of next generation sequencing for diagnosis of inherited myopathy, and to analyze the relevance between clinical phenotype and genotype in inherited myopathy.
METHODRelated genes were selected for SureSelect target enrichment system kit (Panel Version 1 and Panel Version 2). A total of 134 patients who were diagnosed as inherited myopathy clinically underwent next generation sequencing in Department of Pediatrics, Peking University First Hospital from January 2013 to June 2014. Clinical information and gene detection result of the patients were collected and analyzed.
RESULTSeventy-seven of 134 patients (89 males and 45 females, visiting ages from 6-month-old to 26-year-old, average visiting age was 6 years and 1 month) underwent next generation sequencing by Panel Version 1 in 2013, and 57 patients underwent next generation sequencing by Panel Version 2 in 2014. The gene detection revealed that 74 patients had pathogenic gene mutations, and the positive rate of genetic diagnosis was 55.22%. One patient was diagnosed as metabolic myopathy. Five patients were diagnosed as congenital myopathy; 68 were diagnosed as muscular dystrophy, including 22 with congenital muscular dystrophy 1A (MDC1A), 11 with Ullrich congenital muscular dystrophy (UCMD), 6 with Bethlem myopathy (BM), 12 with Duchenne muscular dystrophy (DMD) caused by point mutations in DMD gene, 5 with LMNA-related congenital muscular dystrophy (L-CMD), 1 with Emery-Dreifuss muscular dystrophy (EDMD), 7 with alpha-dystroglycanopathy (α-DG) patients, and 4 with limb-girdle muscular dystrophy (LGMD) patients.
CONCLUSIONNext generation sequencing plays an important role in diagnosis of inherited myopathy. Clinical and biological information analysis was essential for screening pathogenic gene of inherited myopathy.
Adolescent ; Child ; Child, Preschool ; Contracture ; DNA Mutational Analysis ; Female ; Genetic Diseases, Inborn ; diagnosis ; genetics ; Genetic Testing ; Genotype ; High-Throughput Nucleotide Sequencing ; Humans ; Infant ; Male ; Molecular Diagnostic Techniques ; Muscular Diseases ; diagnosis ; genetics ; Muscular Dystrophies ; congenital ; Muscular Dystrophies, Limb-Girdle ; Muscular Dystrophy, Duchenne ; Muscular Dystrophy, Emery-Dreifuss ; Mutation ; Phenotype ; Sclerosis ; Walker-Warburg Syndrome ; Young Adult
8.Genetic analysis and prenatal diagnosis of Xp deletion in a family with Duchenne/Becker muscular dystrophy.
Jing HE ; Lei WANG ; Xinhua TANG ; Bicheng YANG ; Jie SU ; Fuman JIANG ; Baosheng ZHU ; Qi ZHANG
Chinese Journal of Medical Genetics 2015;32(5):687-690
OBJECTIVE To delineate a deletional mutation of the Dystrophin gene on the short arm of chromosome X in a family affected with Duchenne/Becker muscular dystrophy. METHODS G-banded karyotyping, multiple ligation probe amplification (MLPA), array-based comparative genomic hybridization(array-CGH) and whole genome exon high-throughput sequencing were employed to delineate the mutation in the family. RESULTS GTG banding has demonstrated deletion of the terminal part of the short arm of chromosome X in the fetus. The same deletion was also found in its mother and maternal grandmother. MLPA analysis has revealed removal of exons 52 to 79 of the Dystrophin gene. A 30 Mb deletion in Xp22.33-p21.1 and a 10 Mb duplication in Xq27.2-q28 were identified by array-CGH and whole genome exon high-throughput sequencing. CONCLUSION The Xp deletion has led to deletion of exons 52 to 79 of the Dystrophin gene in the family. The female carriers also had certain features of Turner syndrome due to the same deletion.
Chromosome Deletion
;
Chromosomes, Human, X
;
Female
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Muscular Dystrophy, Duchenne
;
diagnosis
;
genetics
;
Nucleic Acid Amplification Techniques
;
Pregnancy
;
Prenatal Diagnosis
9.Detection of a recurrent de novo mutation in a Chinese family affected with Duchenne muscular dystrophy.
Honglei DUAN ; Wanjun WANG ; Xiangyu ZHU ; Yaping WANG ; Jie LI
Chinese Journal of Medical Genetics 2015;32(4):495-497
OBJECTIVETo provide genetic analysis for a family affected with Duchenne muscular dystrophy (DMD) with a recurrent de novo mutation.
METHODSMultiplex ligation dependent probe amplification (MLPA) was used to detect potential deletion and duplication of the DMD gene, and the DNA products were sequenced on a Genetic Analyzer 3130 sequencer. Haplotype analysis was performed using four short tandem repeat polymorphism loci (44C/A, 45C/A, 49C/A and 63C/A) of the DMD gene for the family.
RESULTSA same deletional mutation (Del 48-50) of the DMD gene was detected in the proband and fetus, but not in their mother. The proband and fetus have inherited the same haplotype of the DMD gene from their mother. The fetus was predicted to be affected by the disease.
CONCLUSIONAbove findings suggested that the mother was very likely to have a germline mosaicism for the DMD gene mutation. For the de novo DMD mutation, although genetic analysis of peripheral blood DNA has indicated that the proband's mother was not a carrier, germline mosaicism could still not be ruled out, and prenatal gene diagnosis should be provided for subsequent pregnancies.
Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; Child ; China ; Dystrophin ; genetics ; Female ; Fetal Diseases ; diagnosis ; genetics ; Humans ; Infant ; Male ; Molecular Sequence Data ; Mosaicism ; Muscular Dystrophy, Duchenne ; embryology ; genetics ; Pedigree ; Pregnancy ; Prenatal Diagnosis ; Sequence Deletion
10.Genetic testing and prenatal diagnosis for eight families affected with Duchenne muscular dystrophy.
Yu LI ; Jianfang ZHANG ; Ying XU ; Fenfen GUO ; Hui XU ; Feng YAN ; Juxia REN ; Detang WANG ; Biliang CHEN
Chinese Journal of Medical Genetics 2015;32(3):363-366
OBJECTIVETo optimize the methods for genetic detection and prenatal diagnosis of Duchenne muscular dystrophy (DMD).
METHODSDenaturing high-performance liquid chromatography (DHPLC), multiplex PCR (mPCR), sequencing and other molecular techniques were used in combination for molecular diagnosis of 8 cases diagnosed as DMD.
RESULTSAmong the 8 cases, 4 have carried large deletions, 3 have point mutations, among which 6 were of de novo type. Prenatal diagnosis were offered for 5 families, the results showed that none of the fetuses had carried large deletions or point mutations. The pregnancies had continued and healthy babies were born.
CONCLUSIONCombined use of short tandem repeat, DHPLC, mPCR and sequencing can improve the detection of DMD gene mutations. By establishing and optimizing genetic and prenatal diagnostic methods, accurate genetic counseling can be provided for families affected with DMD.
Adult ; Base Sequence ; Female ; Fetal Diseases ; diagnosis ; genetics ; Genetic Testing ; Humans ; Molecular Sequence Data ; Muscular Dystrophy, Duchenne ; diagnosis ; embryology ; genetics ; Pedigree ; Point Mutation ; Pregnancy ; Prenatal Diagnosis ; Sequence Deletion ; Young Adult

Result Analysis
Print
Save
E-mail