1.Effects of Antioxidant on Reduction of Hindlimb Muscle Atrophy Induced by Cisplatin in Rats.
Journal of Korean Academy of Nursing 2014;44(4):371-380
PURPOSE: The purpose of this study was to examine the effects of Cu/Zn SOD on reduction of hindlimb muscular atrophy induced by cisplatin in rats. METHODS: Forty-two rats were assigned to three groups; control group, Cisplatin (CDDP) group and cisplatin with Cu/Zn SOD (CDDP-SOD) group. At day 35 hindlimb muscles were dissected. Food intake, activity, withdrawal threshold, muscle weight, and Type I, II fiber cross-sectional area (CSA) of dissected muscles were measured. Relative SOD activity and expression of MHC and phosphorylated Akt, ERK were measured after dissection. RESULTS: Muscle weight and Type I, II fiber CSA of hindlimb muscles in the CDDP group were significantly less than the control group. Muscle weight and Type I, II fiber CSA of hindlimb muscles, food intake, activity, and withdrawal thresholds of the CDDP-SOD group were significantly greater than the CDDP group. There were no significant differences in relative SOD activities of hindlimb muscles between the CDDP-SOD and CDDP groups. MHC expression and phosphorylated Akt, ERK of hindlimb muscles in the CDDP-SOD group were significantly greater than the CDDP group. CONCLUSION: Cu/Zn SOD attenuates hindlimb muscular atrophy induced by cisplatin through increased food intake and activity. Increment of phosphorylated Akt, ERK may relate to attenuation of hindlimb muscular atrophy.
Animals
;
Body Weight/drug effects
;
Cisplatin/*toxicity
;
Disease Models, Animal
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Hindlimb
;
Male
;
Muscle, Skeletal/*drug effects/enzymology/metabolism
;
Muscular Atrophy/*chemically induced/metabolism/pathology
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Recombinant Proteins/biosynthesis/genetics/pharmacology
;
Superoxide Dismutase/genetics/metabolism/pharmacology
;
Superoxides/metabolism
2.Effect of DHEA on Recovery of Muscle Atrophy Induced by Parkinson's Disease.
Myoung Ae CHOE ; Gyeong Ju AN ; Byung Soo KOO ; Songhee JEON
Journal of Korean Academy of Nursing 2011;41(6):834-842
PURPOSE: The purpose of this study was to determine the effect of dehydroepiandrosterone (DHEA) on recovery of muscle atrophy induced by Parkinson's disease. METHODS: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 20 microg) into the left striatum using stereotaxic surgery. Rats were divided into two groups; the Parkinson's disease group with vehicle treatment (Vehicle; n=12) or DHEA treatment group (DHEA; n=22). DHEA or vehicle was administrated intraperitoneally daily at a dose of 0.34 mmol/kg for 21 days. At 22-days after DHEA treatment, soleus, plantaris, and striatum were dissected. RESULTS: The DHEA group showed significant increase (p<.01) in the number of tyrosine hydroxylase (TH) positive neurons in the lesioned side substantia nigra compared to the vehicle group. Weights and Type I fiber cross-sectional areas of the contralateral soleus of the DHEA group were significantly greater than those of the vehicle group (p=.02, p=.00). Moreover, extracellular signal-regulated kinase (ERK) phosphorylation significantly decreased in the lesioned striatum, but was recovered with DHEA and also in the contralateral soleus muscle, Akt and ERK phosphorylation recovered significantly and the expression level of myosin heavy chain also recovered by DHEA treatment. CONCLUSION: Our results suggest that DHEA treatment recovers Parkinson's disease induced contralateral soleus muscle atrophy through Akt and ERK phosphorylation.
Animals
;
Corpus Striatum/drug effects/metabolism
;
Dehydroepiandrosterone/*pharmacology/therapeutic use
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Male
;
Muscle Fibers, Slow-Twitch/drug effects
;
Muscle, Skeletal/drug effects/metabolism
;
Muscular Atrophy/drug therapy/*etiology/*pathology
;
Myosins/metabolism
;
Neurons/drug effects/enzymology
;
Oxidopamine/toxicity
;
Parkinson Disease, Secondary/*chemically induced/*complications
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Tyrosine 3-Monooxygenase/metabolism