1.Research progress on phenotypic modifier genes in spinal muscular atrophy.
Chinese Journal of Contemporary Pediatrics 2025;27(2):229-235
Spinal muscular atrophy (SMA) is a common fatal autosomal recessive genetic disorder in childhood, primarily caused by homozygous deletion of the SMN1 gene. Its main characteristics include the degenerative changes in the anterior horn motor neurons of the spinal cord, leading to symmetrical progressive muscle weakness and atrophy of the proximal limbs. However, SMA patients with the same genetic background often exhibit different degrees of disease severity. In addition to the well-established modifier gene SMN2, the effect of other modifier genes on clinical phenotypes should not be overlooked. This paper reviews the latest advancements in the pathogenic and modifier genes of SMA, aiming to provide a deeper understanding of the pathogenic mechanisms and phenotypic differences in SMA, as well as to offer new strategies and targets for treating this condition.
Humans
;
Muscular Atrophy, Spinal/genetics*
;
Phenotype
;
Survival of Motor Neuron 1 Protein/genetics*
;
Genes, Modifier
;
Survival of Motor Neuron 2 Protein/genetics*
2.Molecular pathological mechanism of liver metabolic disorder in mice with severe spinal muscular atrophy.
Lihe LIU ; Mingrui ZHU ; Yifan WANG ; Bo WAN ; Zhi JIANG
Journal of Southern Medical University 2023;43(5):852-858
OBJECTIVE:
To explore the molecular pathological mechanism of liver metabolic disorder in severe spinal muscular atrophy (SMA).
METHODS:
The transgenic mice with type Ⅰ SMA (Smn-/- SMN20tg/2tg) and littermate control mice (Smn+/- SMN20tg/2tg) were observed for milk suckling behavior and body weight changes after birth. The mice with type Ⅰ SMA mice were given an intraperitoneal injection of 20% glucose solution or saline (15 μL/12 h), and their survival time was recorded. GO enrichment analysis was performed using the RNA-Seq data of the liver of type Ⅰ SMA and littermate control mice, and the results were verified using quantitative real-time PCR. Bisulfite sequencing was performed to examine CpG island methylation level in Fasn gene promoter region in the liver of the neonatal mice.
RESULTS:
The neonatal mice with type Ⅰ SMA showed normal milk suckling behavior but had lower body weight than the littermate control mice on the second day after birth. Intraperitoneal injection of glucose solution every 12 h significantly improved the median survival time of type Ⅰ SMA mice from 9±1.3 to 11± 1.5 days (P < 0.05). Analysis of the RNA-Seq data of the liver showed that the expression of the target genes of PPARα related to lipid metabolism and mitochondrial β oxidation were down-regulated in the liver of type Ⅰ SMA mice. Type Ⅰ SMA mice had higher methylation level of the Fasn promoter region in the liver than the littermate control mice (76.44% vs 58.67%). In primary cultures of hepatocytes from type Ⅰ SMA mice, treatment with 5-AzaC significantly up-regulated the expressions of the genes related to lipid metabolism by over 1 fold (P < 0.01).
CONCLUSION
Type Ⅰ SMA mice have liver metabolic disorder, and the down-regulation of the target genes of PPARα related to lipid and glucose metabolism due to persistent DNA methylation contributes to the progression of SMA.
Mice
;
Animals
;
PPAR alpha
;
Liver Diseases
;
Muscular Atrophy, Spinal/genetics*
;
Mice, Transgenic
;
Body Weight
;
Glucose
3.Analysis of a Chinese pedigree affected with Spinal muscular atrophy due to compound heterozygous variants of SMN gene.
Yan GU ; Liping LI ; Hui CHEN ; Lingjun XU ; Yinghui FANG ; Xihua XU ; Yingying LONG
Chinese Journal of Medical Genetics 2023;40(11):1387-1391
OBJECTIVE:
To analyze variants of SMN gene in a Chinese pedigree affected with Spinal muscular atrophy (SMA).
METHODS:
A Chinese pedigree diagnosed at the Nanchang First Hospital in January 2020 was selected as the study subject. Peripheral blood samples were collected for the extraction of DNA. All exons of the SMN gene were detected by multiple ligation-dependent probe amplification (MLPA). Potential variants of the SMN gene were also detected by Whole exome sequencing (WES), and the result was verified by Sanger sequencing. cDNA extracted from fresh blood sample was used as a template to verify the location of variant on the SMN genes.
RESULTS:
The proband was found to harbor a heterozygous deletion of the SMN1 Exon7+Exon8, and a heterozygous c.81G>A variant. The SMN1 Exon7+Exon8 deletion was inherited from her father and grandmother, whilst the c.81G>A variant was inherited from her mother and maternal grandfather. Her aunt was also a carrier of the heterozygous deletion, while her paternal aunt, her husband, and their daughter were not. cDNA amplification and Sanger sequencing confirmed that the c.81G>A variant was located in the SMN1 gene.
CONCLUSION
MLPA combined with NGS and Sanger sequencing can identify compound heterozygous variants of the SMN gene in the SMA patients.
Female
;
Humans
;
Male
;
DNA, Complementary
;
East Asian People
;
Fathers
;
Mothers
;
Muscular Atrophy, Spinal/diagnosis*
;
Pedigree
;
Survival of Motor Neuron 1 Protein/genetics*
4.Analysis of 4 children with DYNC1H1 gene related spinal muscular atrophy with lower extremity predominant 1.
Chang Jian YANG ; Shuang WANG ; Dan Dan TAN ; Yi Dan LIU ; Yan Bin FAN ; Cui Jie WEI ; Dan Yu SONG ; Ying ZHU ; Hui XIONG
Chinese Journal of Pediatrics 2023;61(2):154-158
Objective: To investigate the clinical features and gene variation characteristics of children with dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene associated spinal muscular atrophy with lower extremity predominant (SMALED) 1. Methods: The clinical data of 4 SMALED1 children admitted to Peking University First Hospital from December 2018 to May 2021, who were found to have pathogenic variation of DYNC1H1 gene through genetic testing, except for other genes known to be related to motor retardation, were retrospectively summarized to analyze the phenotype and genotype characteristics. Results: There were 3 males and 1 female. The age of onset was 1 year, 1 day, 1 day and 4 months, respectively. The age of diagnosis was 4 years and 10 months, 9 months, 5 years and 9 months, and 3 years and 1 month, respectively. The clinical manifestations were muscle weakness and muscular atrophy of lower limbs, 2 cases with foot deformity, 1 case with early non progressive joint contracture, 1 case with hip dislocation and 1 case with mental retardation. De novo heterozygous missense variations in DYNC1H1 gene were found in all 4 children. According to the rating of American College of medical genetics and genomics, they were all possible pathogenic and pathogenic variations, with p.R598C, p.P776L, p.Y1109D variations had been reported, and p.I1086R variation had not been reported. Conclusions: For those with unexplained lower limb muscle weakness, muscle atrophy, joint contracture and foot deformity, upper limb motor ability related retention, with or without mental retardation, as well as the motor ability progresses slowly, it is necessary to consider the possibility of SMALED1 and the detection of DYNC1H1 gene when necessary.
Female
;
Male
;
Humans
;
Intellectual Disability
;
Retrospective Studies
;
Muscular Atrophy, Spinal/genetics*
;
Lower Extremity
;
Muscle Weakness
;
Muscular Atrophy
;
Contracture
;
Cytoplasmic Dyneins/genetics*
5.Application of single sperm sequencing for the preimplantation genetic testing of a Chinese family affected with Spinal muscular atrophy.
Jia CHEN ; Xingwu WU ; Ge CHEN ; Pengpeng MA ; Wan LU ; Zhihui HUANG ; Cailin XIN ; Yan ZHAO ; Qiongfang WU ; Yanqiu LIU
Chinese Journal of Medical Genetics 2023;40(2):148-154
OBJECTIVE:
To assess the value of single sperm sequencing in preimplantation genetic testing for monogenic disease (PGT-M).
METHODS:
A Chinese couple with two children whom had died of Spinal muscular atrophy (SMA) and attended the Jiangxi Provincial Maternal and Child Health Care Hospital in June 2020 was selected as the subject. Eleven single sperm samples were isolated by mechanical immobilization and subjected to whole genome amplification. Real-time PCR and Sanger sequencing were used to detect the SMN1 variants in the single sperm samples. Genomic DNA of the wife, her parents and the husband, as well as one single sperm sample harboring the SMN1 variant and two single sperm samples without the variant were used for the linkage analysis. Targeted capture and high-throughput sequencing were carried out to test 100 single nucleotide polymorphisms distributed within 2 Mb up- and downstream the variant site. The haplotypes linked with the SMN1 variants were determined by linkage analysis. Blastocyst embryos were harvested after fertilizing by intracytoplasmic sperm injection. Cells from the trophoblasts of each embryo were biopsied and subjected to whole genome amplification and targeted capture and high-throughput sequencing to determine their carrier status. Chromosomal aneuploidy of wild-type embryos was excluded. An euploid embryo of high quality was transferred. Amniotic fluid sample was taken at 18 weeks of gestation to confirm the status of the fetus.
RESULTS:
Genetic testing showed that the couple both had deletion of exons 7 ~ 8 of the SMN1 gene. The wife has inherited the deletion from her father, while the husband was de novo. The haplotypes of the husband were successfully constructed by single sperm sequencing. Preimplantation genetic testing has indicated that 5 embryos had harbored the heterozygous variant, 4 embryos were of the wild type, among which 3 were euploid. Prenatal diagnosis during the second trimester of pregnancy has confirmed that the fetus did not carry the deletion.
CONCLUSION
By single sperm sequencing and PGT-M, the birth of further affected child has been successfully avoided.
Humans
;
Pregnancy
;
Female
;
Child
;
Male
;
Preimplantation Diagnosis
;
East Asian People
;
Semen
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Aneuploidy
;
Blastocyst/pathology*
;
High-Throughput Nucleotide Sequencing
;
Spermatozoa
6.Results of carrier screening for Spinal muscular atrophy among 35 145 reproductive-aged individuals from Dongguan region.
Ying ZHAO ; Jiwu LOU ; Youqing FU ; Yunshi DAI ; Qiaoyi LIANG ; Manna SUN ; Junru TAN ; Yanhui LIU
Chinese Journal of Medical Genetics 2023;40(6):655-660
OBJECTIVE:
To carry out carrier screening for Spinal muscular atrophy (SMA) in reproductive-aged individuals from Dongguan region and determine the carrier frequency of SMN1 gene mutations.
METHODS:
Reproductive-aged individuals who underwent SMN1 genetic screening at the Dongguan Maternal and Child Health Care Hospital from March 2020 to August 2022 were selected as the study subjects. Deletions of exon 7 and 8 (E7/E8) of the SMN1 gene were detected by real-time fluorescence quantitative PCR (qPCR), and prenatal diagnosis was provided for carrier couples by multiple ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 35 145 subjects, 635 were found to be carriers of SMN1 E7 deletion (586 with heterozygous E7/E8 deletion, 2 with heterozygous E7 deletion and homozygous E8 deletion, and 47 with sole heterozygous E7 deletion). The carrier frequency was 1.81% (635/35 145), with 1.59% (29/1 821) in males and 1.82% (606/33 324) in females. There was no significant difference between the two genders (χ² = 0.497, P = 0.481). A 29-year-old woman was found to harbor homozygous deletion of SMN1 E7/E8, and was verified to have a SMN1∶SMN2 ratio of [0∶4], none of her three family members with a [0∶4] genotype had clinical symptoms. Eleven carrier couples had accepted prenatal diagnosis, and one fetus was found to have a [0∶4] genotype, and the pregnancy was terminated.
CONCLUSION
This study has determined the SMA carrier frequency in Dongguan region for the first time and provided prenatal diagnosis for carrier couples. The data can provide a reference for genetic counseling and prenatal diagnosis, which has important clinical implications for the prevention and control of birth defects associated with SMA.
Humans
;
Child
;
Pregnancy
;
Male
;
Female
;
Adult
;
Homozygote
;
Sequence Deletion
;
Prenatal Diagnosis
;
Genetic Testing
;
Muscular Atrophy, Spinal/genetics*
;
Survival of Motor Neuron 1 Protein/genetics*
;
Genetic Carrier Screening
7.Clinical and genetic characteristics of 9 rare cases with coexistence of dual genetic diagnoses.
Dan Dan TAN ; Yi Dan LIU ; Yan Bin FAN ; Cui Jie WEI ; Dan Yang SONG ; Hai Po YANG ; Hong PAN ; Wei Li CUI ; Shan Shan MAO ; Xiang Ping XU ; Xiao Li YU ; Bo CUI ; Hui XIONG
Chinese Journal of Pediatrics 2023;61(4):345-350
Objective: To analyze the clinical and genetic characteristics of pediatric patients with dual genetic diagnoses (DGD). Methods: Clinical and genetic data of pediatric patients with DGD from January 2021 to February 2022 in Peking University First Hospital were collected and analyzed retrospectively. Results: Among the 9 children, 6 were boys and 3 were girls. The age of last visit or follow-up was 5.0 (2.7,6.8) years. The main clinical manifestations included motor retardation, mental retardation, multiple malformations, and skeletal deformity. Cases 1-4 were all all boys, showed myopathic gait, poor running and jumping, and significantly increased level of serum creatine kinase. Disease-causing variations in Duchenne muscular dystrophy (DMD) gene were confirmed by genetic testing. The 4 children were diagnosed with DMD or Becker muscular dystrophy combined with a second genetic disease, including hypertrophic osteoarthropathy, spinal muscular atrophy, fragile X syndrome, and cerebral cavernous malformations type 3, respectively. Cases 5-9 were clinically and genetically diagnosed as COL9A1 gene-related multiple epiphyseal dysplasia type 6 combined with NF1 gene-related neurofibromatosis type 1, COL6A3 gene-related Bethlem myopathy with WNT1 gene-related osteogenesis imperfecta type XV, Turner syndrome (45, X0/46, XX chimera) with TH gene-related Segawa syndrome, Chromosome 22q11.2 microduplication syndrome with DYNC1H1 gene-related autosomal dominant lower extremity-predominant spinal muscular atrophy-1, and ANKRD11 gene-related KBG syndrome combined with IRF2BPL gene-related neurodevelopmental disorder with regression, abnormal movement, language loss and epilepsy. DMD was the most common, and there were 6 autosomal dominant diseases caused by de novo heterozygous pathogenic variations. Conclusions: Pediatric patients with coexistence of double genetic diagnoses show complex phenotypes. When the clinical manifestations and progression are not fully consistent with the diagnosed rare genetic disease, a second rare genetic disease should be considered, and autosomal dominant diseases caused by de novo heterozygous pathogenic variation should be paid attention to. Trio-based whole-exome sequencing combining a variety of molecular genetic tests would be helpful for precise diagnosis.
Humans
;
Abnormalities, Multiple
;
Retrospective Studies
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/complications*
;
Tooth Abnormalities/complications*
;
Facies
;
Muscular Dystrophy, Duchenne/complications*
;
Muscular Atrophy, Spinal/complications*
;
Carrier Proteins
;
Nuclear Proteins
9.Expert consensus on preimplantation genetic testing for spinal muscular atrophy.
THE EXPERT CONSENSUS GROUP FOR PREIMPLANTATION GENETIC TESTING FOR SPINAL MUSCULAR ATROPHY ; Liying YAN ; Xiaohui ZHU ; Jin HUANG ; Jie QIAO
Chinese Journal of Medical Genetics 2022;39(2):129-134
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron degenerative disease, which is the most common fatal neuromuscular disease in pediatrics with a high carrier frequency and can lead to progressive symmetrical muscle weakness and atrophy of the trunk and limbs. Preimplantation genetic testing (PGT) can be used to prevent the birth of children with SMA effectively. To standardize PGT technologies for SMA, experts from the fields of neurology, pediatrics and reproductive genetics have discussed and drafted this consensus for guiding its clinical application.
Child
;
Consensus
;
Genetic Testing
;
Humans
;
Muscular Atrophy, Spinal/genetics*
;
Survival of Motor Neuron 1 Protein/genetics*
10.Recent research on the treatment of spinal muscular atrophy.
Chinese Journal of Contemporary Pediatrics 2022;24(2):204-209
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by progressive muscular weakness and atrophy. SMA, as an inherited disease, is the leading cause of death in infants and young children. Rapid progress has been made in the research field of SMA in recent years, and some related treatment drugs have been successfully approved for marketing. This article reviews the recent research advances in the treatment of SMA.
Child
;
Child, Preschool
;
Humans
;
Infant
;
Muscular Atrophy, Spinal/genetics*

Result Analysis
Print
Save
E-mail