1.Research advance on the pathogenesis of autosomal recessive spastic ataxia of Charlevoix-Saguenay.
Rong FU ; Man DING ; Zuneng LU
Chinese Journal of Medical Genetics 2023;40(1):121-124
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare and early-onset neurodegenerative disease caused by variants of the SACS gene which maps to chromosome 13q11 and encodes sacsin protein. Sacsin is highly expressed in large motor neurons, in particular cerebellar Purkinje cells. This article has provided a review for the structure and function of sacsin protein and the mechanisms underlying abnormalities of sacsin in ARSACS disease.
Humans
;
Spinocerebellar Ataxias/pathology*
;
Ataxia/genetics*
;
Muscle Spasticity/genetics*
2.Hereditary Spastic Paraplegia.
Il Saing CHOI ; Hyo Kun CHO ; Ki Whan KIM
Yonsei Medical Journal 1983;24(1):83-86
Hereditary spastic paraplegia (HSP) is a rare hereditary disorder and becomes clinically apparent during adolescence or in childhood and progresses s1owly throughout the adult years with a variability in the severity of expression. We experienced 3 cases of hereditary spastic paraplegia. Cases 1 and 2, which were pure HSP, had only the signs and symptoms of corticospinal tract involvement with the positive family history, and case 3, which was a complicated case of HSP, had distal muscle wasting, dysarthria, signs and symptoms of the corticospinal tracts, and a positive family history. All are thought to be inherited in an autosomal dominant pattern.
Adult
;
Female
;
Human
;
Male
;
Middle Age
;
Muscle Spasticity/genetics
;
Paraplegia/genetics*
3.Genetic analysis of a child with Charlevoix-Saguenay spastic ataxia due to variant of SACS gene.
Huan LUO ; Xiaolu CHEN ; Xueyi RAO ; Yajun SHEN ; Jinfeng LIU ; Zuozhen YANG ; Jing GAN
Chinese Journal of Medical Genetics 2023;40(5):558-562
OBJECTIVE:
To explore the clinical feature and genetic variant of a child with autosomal recessive Charlevoix-Saguenay type spastic ataxia (ARSACS).
METHODS:
Clinical data of a child who was admitted to the West China Second Hospital of Sichuan University on April 30, 2021 was collected. Whole exome sequencing (WES) was carried out for the child and his parents. Candidate variants were verified by Sanger sequencing and bioinformatic analysis based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
RESULTS:
The child, a 3-year-and-3-month-old female, had a complain of "walking instability for over a year". Physical and laboratory examination revealed progressive and aggravated gait instability, increased muscle tone of the right limbs, peripheral neuropathy of the lower limbs, and thickening of retinal nerve fiber layer. The results of WES revealed that she has harbored a maternally derived heterozygous deletion of exons 1 to 10 of the SACS gene, in addition with a de novo heterozygous c.3328dupA variant in exon 10 of the SACS gene. Based on the ACMG guidelines, the exons 1-10 deletion was rated as likely pathogenic (PVS1+PM2_Supporting), and the c.3328dupA was rated as a pathogenic variant (PVS1_Strong+PS2+PM2_Supporting). Neither variant was recorded in the human population databases.
CONCLUSION
The c.3328dupA variant and the deletion of exons 1-10 of the SACS gene probably underlay the ARSACS in this patient.
Female
;
Humans
;
Heat-Shock Proteins/genetics*
;
Muscle Spasticity/genetics*
;
Mutation
;
Spinocerebellar Ataxias/pathology*
;
Child, Preschool
4.Analysis of SACS mutation in a family affected with autosomal recessive spastic ataxia of Charlevoix-Saguenay.
Qian ZHANG ; Huanzheng LI ; Chong CHEN ; Zhaotang LUAN ; Xueqin XU ; Shaohua TANG
Chinese Journal of Medical Genetics 2019;36(3):217-220
OBJECTIVE:
To carry out mutation analysis for a Chinese family affected with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS).
METHODS:
Whole exome sequencing (WES) was used to screen potential mutations within genomic DNA extracted from the proband. Suspected mutation was validated by combining clinical data and results of Sanger sequencing.
RESULTS:
A homozygous deletional mutation c.3665_3675delGTGCTGTCTTA (p.S1222fs) was found in the proband, for which her parents were both heterozygous carriers.
CONCLUSION
WES is capable of detecting mutation underlying this disorder and facilitating genetic counseling and prenatal diagnosis for the affected family. A novel pathogenic mutation of the SACS gene was discovered.
Female
;
Genes, Recessive
;
Heat-Shock Proteins
;
genetics
;
Humans
;
Muscle Spasticity
;
Mutation
;
Spinocerebellar Ataxias
;
congenital