1.Porcine skeletal muscle development regulated by MicroRNA: a review.
Yulin HE ; Jianjun JIN ; Dong LI ; Gongshe YANG ; Taiyong YU
Chinese Journal of Biotechnology 2023;39(4):1514-1524
The growth and development of skeletal muscle is an important factor affecting pork production and quality, which is elaborately regulated by many genetic and nutritional factors. MicroRNA (miRNA) is a non-coding RNA with a length of about 22 nt, which binds to the 3'UTR sequence of the mRNA of the target genes, and consequently regulates its post-transcriptional expression level. In recent years, a large number of studies have shown that miRNAs are involved in various life processes such as growth and development, reproduction, and diseases. The role of miRNAs in the regulation of porcine skeletal muscle development was reviewed, with the hope to provide a reference for the genetic improvement of pigs.
Swine
;
Animals
;
MicroRNAs/metabolism*
;
Muscle, Skeletal/metabolism*
;
Muscle Development/genetics*
2.Molecular cloning, expression mutation of myostatin and study on biochemical activity of its C-terminal peptide.
Xing-Yuan YANG ; Jian HOU ; Xiao-Rong AN ; Hong GUAN ; Ke-Mian GOU ; Shu-Hong YANG ; Li-Dong CHEN ; Yong-Fu CHEN
Chinese Journal of Biotechnology 2003;19(4):480-483
Myostatin, a member of the TGF-beta family, negatively regulates skeletal muscle development. Mutation of myostatin activity leads to increases muscle growth and carcass lean yield. The bovine myostatin mutation cDNA was amplified by polymerase chain reaction, and then sub-cloned into the expression vector pET-30a( + ) to form the expression plasmid pET30a (+)-action/ Myostatin. The recombinant plasmid was transformed into E. coli BL21. The overexpression product of pET30a (+)-action/ Myostatin was been showed in vitro. Sheep skeletal muscle cell were cultured with the purified myostatin mutation C-terminal peptide. The results of this study suggest that had a powerful activity to stimulate the hyperplasia and proliferation of sheep muscle cells and shows high biochemical activity.
Animals
;
Cattle
;
Cell Proliferation
;
Cells, Cultured
;
Cloning, Molecular
;
Genetic Vectors
;
genetics
;
Muscle Development
;
genetics
;
physiology
;
Muscle, Skeletal
;
cytology
;
metabolism
;
Mutation
;
Myostatin
;
genetics
;
metabolism
;
Peptides
;
genetics
;
metabolism
;
Sheep
3.Effects of recombinant retroviral vector mediated human insulin like growth factor-1 gene transfection on skeletal muscle growth in rat.
Shu-ling RONG ; Yong-xin LU ; Yu-hua LIAO ; Xiao-lin WANG ; He-ping GUO ; Chao CHANG ; Yan-zhang GAO ; Shao-hua MI ; Jian-ping WAN
Chinese Medical Journal 2006;119(23):1991-1998
BACKGROUNDThis study transferred a recombinant gene encoding human insulin like growth factor-1 (hIGF-1) into modified primary skeletal myoblasts with a retroviral vector (pLgXSN) and determined whether the hIGF-1 promoted growth of skeletal muscle in rat.
METHODShIGF-1cDNA was amplified in vitro from normal human liver cells by using RT-PCR and cloned into plasmid vector pLgXSN. The recombinant vector pLghIGF-1SN and control vector pLgGFPSN were transfected into packaging cell PT67 and G418 was used to select positive colony. Myoblasts were infected with a high titre viral supernatant and transduction efficiency was evaluated as GFP expression. The expression of hIGF-1 mRNA in myoblasts was investigated by immunocytochemistry and RT-PCR. MTT assays detected the growth of myoblasts in vitro. Myoblasts transduced with pLghIGF-1SN were injected into hind limb muscles of 10 - 12 week male SD rats. Formed tissues were harvested 4 weeks later. Myocyte diameter, mean weight of hind limb and body were measured to evaluate the skeletal muscle growth.
RESULTSRecombinant retroviral plasmid vector pLghIGF-1SN was constructed successfully. The titre of the packaged recombinant retrovirus was 1 x 10(6) cfu/ml. The transfection rate of PT67 cells reached 100% after G418 screening. hIGF-1 expression was positive in myoblast-IGF-1. The proliferation rate of myoblast-IGF-1 in vitro was higher than GFP-myoblast or myoblast (P < 0.05). The mean weights of hind limb and body of rats injected myoblast-IGF-1 were higher than those of the rats injected with myoblast-GFP or myoblast (P < 0.05). Myocyte diameter had a significant increase in IGF-1 group compared to GFP group and myoblast group (P < 0.05).
CONCLUSIONSThe transfection of the human IGF-1 gene mediated by a retroviral vector can promote the growth of skeletal muscle in rats. Genetically modified primary skeletal myoblasts provide a possibly effective approach to treat some skeletal muscle diseases.
Animals ; Cells, Cultured ; DNA, Recombinant ; genetics ; Genetic Vectors ; Insulin-Like Growth Factor I ; genetics ; physiology ; Muscle, Skeletal ; growth & development ; Myoblasts ; physiology ; Rats ; Rats, Sprague-Dawley ; Retroviridae ; genetics ; Transfection
4.Permanent myopathy caused by mutation of SCN4A Metl592Val: Observation on myogenesis in vitro and on effect of basic fibroblast growth factor on the muscle.
Yu FENG ; Hong WANG ; Xiao-Guang LUO ; Yan REN
Neuroscience Bulletin 2009;25(2):61-66
OBJECTIVEThe present study is to observe in vitro the proliferation ability of the muscle cells from permanent myopathy (PM) patients of nomokalaemic periodic paralysis (normKPP), which is caused by mutations of Met1592Val in the skeletal muscle voltage gated sodium channel (SCN4A) gene on chromosome 17q23.1. We also evaluate the possible effect of the foreign basic fibroblast growth factor (bFGF) in preventing and curing PM.
METHODSThe gastrocnemius muscle cells were taken from two male patients with PM of the same Chinese family with Met1592Val mutation of SCN4A, determined by gene screening. Four male patients suffering from the skeletal injury without PM were taken as control. All preparations were protogenerationally cultured in vitro. Proliferation of the cultured preparations was measured by MTT. Activities of the lactic dehydrogenase (LDH), creatine kinase (CK), and protein content in these cells were also detected. The effects of bFGF with different doses (10 ng/mL, 20 ng/mL, 40 ng/mL, 80 ng/mL, 120 ng/mL and 160 ng/mL) on the above mentioned parameters were also evaluated.
RESULTSCells from both PM and control subjects were successfully cultured in vitro. The cultivation of the muscle cells from PM patients in vitro was not yet seen. Results indicated the obvious stimulation of bFGF on cell proliferation, activities of LDH and CK, protein synthesis, in a dose dependent manner. The optimal dose of bFGF was 120 ng/mL (P<0.05), beyond which greater dose caused a less effect. The effect of bFGF on 160 ng /mL was stronger than that on 80 ng/mL, but there was no significant difference (P>0.05).
CONCLUSIONMyoblastic cells from patients with PM had a weaker ability of developing into the myotubules, thus they were unable to perform effective regeneration, which resulted in a progressive necrosis. The exogenous bFGF could promote the division and proliferation of the muscle cells in vitro. These results shield a light on bFGFos potential role in preventing and treating PM.
Adult ; Cell Proliferation ; drug effects ; Cells, Cultured ; Creatine Kinase ; metabolism ; Dose-Response Relationship, Drug ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; L-Lactate Dehydrogenase ; metabolism ; Male ; Methionine ; genetics ; Middle Aged ; Muscle Development ; genetics ; physiology ; Muscular Diseases ; genetics ; pathology ; Mutation ; genetics ; Myoblasts ; drug effects ; NAV1.4 Voltage-Gated Sodium Channel ; Sodium Channels ; genetics ; Valine ; genetics
5.The Effect of Chlamydia pneumoniae on the Expression of Peroxisome Proliferator-Activated Receptor-gamma in Vascular Smooth Muscle Cells.
Yong Hwan KIM ; Si Young CHOI ; Jong Hui SUH ; Tae Kyun KIM ; Ki Bae SEUNG ; Young Pil WANG ; Kiyuk CHANG
Yonsei Medical Journal 2008;49(2):230-236
PURPOSE: This study was designed to investigate the change of peroxisome proliferator-activated receptor gamma (PPARgamma) after the infection of the human coronary artery smooth muscle cells (HCSMCs) with Chlamydia pneumoniae (C. pneumoniae) and the effect of PPARgamma agonist on the expression of PPARgamma of C. pneumoniae-infected HCSMCs. MATERIALS AND METHODS: To determine the effect of PPARgamma agonist on the proliferation of C. pneumoniae-infected HCSMCs, rosiglitazone at various concentrations was applied 1 hour before inoculation of HCSMCs. RESULTS: The expression of PPARgamma mRNA in HCSMCs increased from 3 hours after C. pneumoniae infection and reached that of noninfected HCSMCs at 24 hours (p < 0.05). The expression of PPARgamma protein in HCSMCs also increased from 3 hours after C. pneumoniae and persisted until 24 hours as compared with that of noninfected HCSMCs (p < 0.05). The pretreatment of HCSMCs with rosiglitazone followed by the infection with C. pneumoniae augmented the expression of PPARgamma mRNA and protein (p < 0.05) and decreased cell proliferation. CONCLUSION: Our results showed that the expression of PPARgamma increases in response to C. pneumoniae infection and rosiglitazone further augmented the expression of PPARgamma. It is suggested that rosiglitazone could ameliorate the chronic inflammation in the vessel wall induced by C. pneumoniae by augmenting PPARgamma expression.
Blotting, Western
;
Cell Line
;
Cell Proliferation/drug effects
;
Chlamydophila pneumoniae/growth & development/*physiology
;
Gene Expression Regulation/drug effects
;
Humans
;
Muscle, Smooth, Vascular/cytology/drug effects/metabolism
;
Myocytes, Smooth Muscle/drug effects/*metabolism/microbiology
;
PPAR gamma/genetics/*metabolism
;
RNA, Messenger/genetics/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Thiazolidinediones/pharmacology
6.Rapid Isolation of Adipose Tissue-Derived Stem Cells by the Storage of Lipoaspirates.
Young Woo EOM ; Jong Eun LEE ; Mal Sook YANG ; In Keun JANG ; Hyo Eun KIM ; Doo Hoon LEE ; Young Jin KIM ; Won Jin PARK ; Jee Hyun KONG ; Kwang Yong SHIM ; Jong In LEE ; Hyun Soo KIM
Yonsei Medical Journal 2011;52(6):999-1007
PURPOSE: This study examined a rapid isolation method decreasing the time and cost of the clinical application of adipose tissue-derived stem cells (ASCs). MATERIALS AND METHODS: Aliquots (10 g) of the lipoaspirates were stored at 4degrees C without supplying oxygen or nutrients. At the indicated time points, the yield of mononuclear cells was evaluated and the stem cell population was counted by colony forming unit-fibroblast assays. Cell surface markers, stem cell-related transcription factors, and differentiation potentials of ASCs were analyzed. RESULTS: When the lipoaspirates were stored at 4degrees C, the total yield of mononuclear cells decreased, but the stem cell population was enriched. These ASCs expressed CD44, CD73, CD90, CD105, and HLA-ABC but not CD14, CD31, CD34, CD45, CD117, CD133, and HLA-DR. The number of ASCs increased 1x1014 fold for 120 days. ASCs differentiated into osteoblasts, adipocytes, muscle cells, or neuronal cells. CONCLUSION: ASCs isolated from lipoaspirates and stored for 24 hours at 4degrees C have similar properties to ASCs isolated from fresh lipoaspirates. Our results suggest that ASCs can be isolated with high frequency by optimal storage at 4degrees C for 24 hours, and those ASCs are highly proliferative and multipotent, similar to ASCs isolated from fresh lipoaspirates. These ASCs can be useful for clinical application because they are time- and cost-efficient, and these cells maintain their stemness for a long time, like ASCs isolated from fresh lipoaspirates.
5'-Nucleotidase/metabolism
;
Adipose Tissue/*cytology
;
Adult
;
Antigens, CD/metabolism
;
Antigens, CD44/metabolism
;
Antigens, Thy-1/metabolism
;
Cell Differentiation/physiology
;
Cells, Cultured
;
Female
;
Humans
;
Immunoblotting
;
Immunohistochemistry
;
Immunophenotyping
;
Mesenchymal Stem Cells/metabolism
;
Muscle Development/genetics/physiology
;
Osteogenesis/genetics/physiology
;
Receptors, Cell Surface/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Stem Cells/*cytology/metabolism
;
Young Adult