1.Effects of L-Arginine and α
Hong ZHANG ; Zheng Hong ZHANG ; Chen Shan ZHANG ; Zheng Chao WANG
Acta Academiae Medicinae Sinicae 2020;42(6):815-819
Kidney is one of the important organs of the body.With both excretory and endocrine functions,it plays a vital role in regulating the normal physiological state.As a precursor of the nitric oxide(NO)synthesis
Animals
;
Arginine/physiology*
;
Kidney/physiology*
;
Muscle, Smooth, Vascular
;
Nitric Oxide/physiology*
;
Rats
;
Receptors, Adrenergic, alpha-1/physiology*
;
Renal Insufficiency/physiopathology*
;
Signal Transduction
;
Vasoconstriction
2.Advances in molecular mechanism of vascular remodeling in pulmonary arterial hypertension.
Journal of Zhejiang University. Medical sciences 2019;48(1):102-110
Pulmonary arterial hypertension (PAH) is a clinical hemodynamic syndrome characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance leading to right heart failure and death. Vascular remodeling is the most prominent histopathological feature of PAH, which is regulated by many factors. Endoplasmic reticulum stress, calcium disorder and mitochondrial dysfunction are involved in the vascular cell proliferation and apoptosis by regulating intracellular calcium homeostasis and cellular metabolism. Epigenetic phenomenon such as DNA damage and abnormal expression of miRNA are also involved in the regulation of abnormal proliferation of vascular cells. Vascular cell phenotype switching including endothelial-mesenchymal transition and smooth muscle cell phenotype switching play an important role in abnormal proliferation of vascular cells. Vascular remodeling is produced by a variety of cells and molecular pathways, and aiming at multiple targets which is expected to find a new breakthrough in the treatment of PAH,and to improve abnormal vascular remodeling, delay or even reverse the progression of PAH.
Cell Proliferation
;
Cells, Cultured
;
Humans
;
Hypertension, Pulmonary
;
physiopathology
;
MicroRNAs
;
genetics
;
Myocytes, Smooth Muscle
;
pathology
;
Pulmonary Artery
;
pathology
;
Vascular Remodeling
;
genetics
3.Pancreatic kininogenase improves erectile function in streptozotocin-induced type 2 diabetic rats with erectile dysfunction.
Guo-Tao CHEN ; Bai-Bing YANG ; Jian-Huai CHEN ; Zheng ZHANG ; Lei-Lei ZHU ; He-Song JIANG ; Wen YU ; Yun CHEN ; Yu-Tian DAI
Asian Journal of Andrology 2018;20(5):448-453
Erectile dysfunction (ED) associated with type 2 diabetes is a severe problem that requires effective treatment. Pancreatic kininogenase (PK) has the potential to improve the erectile function of ED patients. This study aims to investigate the effect of PK on erectile function in streptozotocin-induced type 2 diabetic ED rats. To achieve this goal, we divided male Sprague-Dawley rats into five groups. One group was not treated, and the other four groups were treated with saline, sildenafil, PK or sildenafil, and PK, respectively, for 4 weeks after the induction of type 2 diabetic ED. Then, intracavernous pressure under cavernous nerve stimulation was measured, and penile tissue was collected for further study. Endothelial nitric oxide synthase levels, smooth muscle content, endothelium content, cyclic guanosine monophosphate (cGMP) levels in the corpus cavernosum, and neuronal nitric oxide synthase levels in the dorsal penile nerve were measured. Improved erectile function and endothelium and smooth muscle content in the corpus cavernosum were observed in diabetic ED rats. When treating diabetic ED rats with PK and sildenafil at the same time, a better therapeutic effect was achieved. These data demonstrate that intraperitoneal injection of PK can improve erectile function in a rat model of type 2 diabetic ED. With further research on specific mechanisms of erectile function improvement, PK may become a novel treatment for diabetic ED.
Animals
;
Cyclic GMP/metabolism*
;
Diabetes Mellitus, Experimental/physiopathology*
;
Erectile Dysfunction/physiopathology*
;
Kallikreins/therapeutic use*
;
Male
;
Muscle, Smooth, Vascular/physiopathology*
;
Nitric Oxide Synthase Type I/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Penile Erection/physiology*
;
Penis/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sildenafil Citrate/therapeutic use*
;
Treatment Outcome
;
Urological Agents/therapeutic use*
4.Role of TRPC6 in pulmonary artery smooth muscle cells proliferation and apoptosis under hypoxia and hypercapnia.
Xu-Guang JIA ; Meng-Xiao ZHENG ; Jing-Jing ZHANG ; Cong-Cong ZHANG ; Mei-Ping ZHAO ; Yi-Ming WU ; Xi-Wen CHEN ; Wan-Tie WANG
Acta Physiologica Sinica 2017;69(1):47-54
The present study was to investigate the role of TRPC6 in pulmonary artery smooth muscle cells (PASMCs) proliferation and apoptosis under hypoxia and hypercapnia. PASMCs were isolated from chloral hydrate-anesthetized male Sprague-Dawley (SD) rats. Cellular purity was assessed by immunofluorescence staining for smooth muscle α-actin under fluorescence microscopy. Passage 4-6 PASMCs were starved for 24 h in serum-free DMEM and divided into 5 groups randomly: normoxia, hypoxia and hypercapnia, DMSO, TRPC6 inhibitor SKF-96365 and TRPC6 activator OAG groups. The normoxic group was incubated under normoxia (5% CO, 21% O, 37 °C) for 24 h, and the others were incubated with corresponding drugs under hypoxic and hypercapnic (6% CO, 5% O, 37 °C) atmosphere for 24 h. TRPC6 mRNA was detected by reverse transcription-PCR. TRPC6 protein was detected by Western blotting. The proliferation of PASMCs was performed by CCK-8 kit. Apoptosis of the PASMCs was detected using TUNEL assay. The [Ca]in the PASMCs was measured using Fura 2-AM fluorescence. The results showed that the expressions of TRPC6 mRNA and protein, and [Ca]were upregulated under hypoxic and hypercapnic conditions. Hypoxia and hypercapnia promoted cellular proliferation and inhibited apoptosis in the PASMCs. OAG enhanced the above-mentioned effects of hypoxia and hypercapnia, whereas SKF-96365 reversed these effects. These results suggest that TRPC6 may play a role in PASMCs proliferation and apoptosis under hypoxia and hypercapnia by regulating [Ca].
Actins
;
Animals
;
Apoptosis
;
Calcium
;
metabolism
;
Cell Hypoxia
;
Cell Proliferation
;
Cells, Cultured
;
Hypercapnia
;
physiopathology
;
Imidazoles
;
Male
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
metabolism
;
Pulmonary Artery
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
TRPC Cation Channels
;
metabolism
5.Calpain mediated pulmonary vascular remodeling in hypoxia induced pulmonary hypertension.
Weifang ZHANG ; Tiantian ZHU ; Aizhen XIONG ; Xiaoyue GE ; Ruilai XU ; Shegui LU ; Changping HU
Journal of Central South University(Medical Sciences) 2016;41(9):929-936
OBJECTIVE:
To explore the role of calpain in pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension and the underlying mechanisms.
METHODS:
Sprague-Dawley rats were randomly divided into the hypoxia group and the normoxia control group. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored by a method with right external jugular vein cannula. Right ventricular hypertrophy index was presented as the ratio of right ventricular weight to left ventricular weight (left ventricle plus septum weight). Levels of calpain-1, -2 and -4 mRNA in pulmonary artery were determined by real-time PCR. Levels of calpain-1, -2 and -4 protein were determined by Western blot. Primary rat pulmonary arterial smooth muscle cells (PASMCs) were divided into 4 groups: a normoxia control group, a normoxia+MDL28170 group, a hypoxia group and a hypoxia+MDL28170 group. Cell proliferation was detected by MTS and flow cytometry. Levels of Ki-67 and proliferating cell nuclear antigen (PCNA) mRNA were determined by real-time PCR.
RESULTS:
RVSP, mPAP and right ventricular remodeling index were significantly elevated in the hypoxia group compared to those in the normoxia group. In the hypoxia group, pulmonary vascular remodeling was significantly developed, accompanied by up-regulation of calpain-1, -2 and -4. MDL28170 significantly inhibited hypoxia-induced proliferation of PASMCs concomitant with the suppression of Ki-67 and PCNA mRNA expression.
CONCLUSION
Calpain mediates vascular remodeling via promoting proliferation of PASMCs in hypoxia-induced pulmonary hypertension.
Animals
;
Calpain
;
genetics
;
physiology
;
Cell Proliferation
;
Dipeptides
;
physiology
;
Hypertension, Pulmonary
;
chemically induced
;
genetics
;
physiopathology
;
Hypertrophy, Right Ventricular
;
Hypoxia
;
Ki-67 Antigen
;
drug effects
;
Myocytes, Smooth Muscle
;
physiology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Up-Regulation
;
Vascular Remodeling
;
genetics
;
physiology
6.Involvement of protein kinase C in enhancement of vascular calcium sensitivity by blocking mesenteric lymph return in hemorrhagic shock rats.
Chun-Yu NIU ; Zi-Gang ZHAO ; Yan-Ling WEI ; Yu-Ping ZHANG ; Jing ZHANG
Acta Physiologica Sinica 2012;64(2):213-219
The aim of the present study was to investigate whether protein kinase C (PKC) was involved in the effect of mesenteric lymph duct ligation or mesenteric lymph drainage on vascular calcium sensitivity in hemorrhagic shock rats. Male Wistar rats were randomly divided into Sham, Shock (hemorrhagic shock), Shock+Ligation (mesenteric lymph duct ligation plus shock) and Shock+Drainage (mesenteric lymph drainage plus shock) groups. After being in shock (hypotension 40 mmHg) for 3 h, the tissue of superior mesenteric artery (SMA) was taken out for detecting the PKC expression and phospho-PKC (p-PKC) activity, and the vascular rings of SMA were prepared and used to measure the response to gradient calcium concentration for assaying the calcium sensitivity, the parameters of which including tension, maximum tension (E(max)) and negative logarithm of EC(50), called the pD(2). Other vascular rings from Shock+Ligation and Shock+Drainage groups were incubated with PKC regulator PMA or Staurosporine before the measurement of calcium sensitivity. The results showed that, PKC expression, p-PKC activity and calcium sensitivity of SMA in Shock group was significantly lower than that of Sham group, whereas the above-mentioned indexes were significantly elevated in Shock+Ligation and Shock+Drainage groups compared with those in Shock group. PKC agonist PMA enhanced the contractile activity of vascular rings to gradient calcium ions, and increased E(max) of SMA in Shock+Ligation and Shock+Drainage groups. On the contrary, PKC inhibitor Staurosporine significantly decreased the response to gradient calcium ions and E(max) of SMA in Shock+Ligation and Shock+Drainage groups. These results suggest that PKC plays a role in the improvement of vascular calcium sensitivity by blockade of mesenteric lymph return in hemorrhagic shock rats.
Animals
;
Calcium
;
pharmacology
;
Drainage
;
Ligation
;
Lymph
;
physiology
;
Lymphatic Vessels
;
physiology
;
Male
;
Mesenteric Artery, Superior
;
drug effects
;
physiology
;
Mesentery
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
Protein Kinase C
;
metabolism
;
physiology
;
Rats
;
Rats, Wistar
;
Shock, Hemorrhagic
;
physiopathology
;
Vasoconstriction
;
drug effects
;
physiology
7.β-estradiol activates BK(Ca) in mesenteric artery smooth muscle cells of post-menopause women.
Jun CHENG ; Xiao-Rong ZENG ; Peng-Yun LI ; Ting-Ting LU ; Xiao-Qiu TAN ; Jing WEN ; Yan YANG
Acta Physiologica Sinica 2012;64(2):121-128
The aim of the present study was to study the effect of β-estradiol (β-E(2)) on the large-conductance Ca(2+)-activated potassium (BK(Ca)) channel in mesenteric artery smooth muscle cells (SMCs). The mesenteric arteries were obtained from post-menopause female patients with abdominal surgery, and the SMCs were isolated from the arteries using an enzymatic disassociation. According to the sources, the SMCs were divided into non-hypertension (NH) and essential hypertension (EH) groups. Single channel patch clamp technique was used to investigate the effect of β-E(2) and ICI 182780 (a specific blocker of estrogen receptor) on BK(Ca) in the SMCs. The results showed the opening of BK(Ca) in the SMCs was voltage and calcium dependent, and could be blocked by IbTX. β-E(2) (100 μmol/L) significantly increased open probability (Po) of BK(Ca) in both NH and EH groups. After β-E(2) treatment, NH group showed higher Po of BK(Ca) compared with EH group. ICI 182780 could inhibit the activating effect of β-E(2) on BK(Ca) in no matter NH or EH groups. These results suggest β-E(2) activates BK(Ca) in mesenteric artery SMCs from post-menopause women via estrogen receptor, but hypertension may decline the activating effect of β-E(2) on BK(Ca).
Aged
;
Estradiol
;
analogs & derivatives
;
pharmacology
;
Female
;
Humans
;
Hypertension
;
physiopathology
;
Large-Conductance Calcium-Activated Potassium Channels
;
agonists
;
metabolism
;
physiology
;
Mesenteric Arteries
;
metabolism
;
physiology
;
Middle Aged
;
Muscle, Smooth, Vascular
;
cytology
;
metabolism
;
physiology
;
Patch-Clamp Techniques
;
Postmenopause
;
physiology
;
Receptors, Estrogen
;
antagonists & inhibitors
8.Time-course changes of myogenic tone of mesenteric small artery in spontaneously hypertensive rat.
Le-Jian LIN ; Fa-Kuan TANG ; Ning HUA ; Hong LU ; Chun-Xia DI ; Xue-Zheng TANG ; Yu LI
Acta Physiologica Sinica 2012;64(1):62-68
To investigate the time-course changes of myogenic tone in mesenteric small artery (MSA) of spontaneously hypertensive rat (SHR), thirty-two 7-week aged SHR rats were randomly divided into four groups (8, 16, 24, 32 weeks of age), and 32 sex- and age-matched Wistar-Kyoto (WKY) rats were assigned to control groups (CON). On the day of the study, segments of MSA were isolated and then cannulated to the two pipettes. Vascular diameters in response to the increased intraluminal pressure (from 0 mmHg to 150 mmHg, by 25 mmHg steps) of isolated MSA under no-flow conditions were recorded by a Pressure Myograph System both in physiologic salt solution (PSS) (active diameter, Da) and calcium-free PSS (passive diameter, Dp). The myogenic tone was calculated by (Dp - Da)/Dp × 100%. The tail artery pressure and vascular myogenic tone in SHR rats were significantly higher than those of the CON rats. Before 24 weeks, the vascular myogenic tone of MSA in SHR group increased monotonically, but at the end of 32 weeks, the vascular myogenic tone decreased in comparison with that in 24-week group, but was significantly higher than that in CON group. The tail artery pressure in SHR group slowly increased monotonically with increasing weeks of age, and the tail arterial pressure in 32-week group remained significantly higher than that in 24-week group. Vascular myogenic tone may participate in the whole process of hypertension. Early in the development of hypertension, because of the compensatory role of vascular tone, the vascular function has been partially compensated, thus guaranteeing adequate blood supply to organs. Late in the development of hypertension, because of the decompensation of myogenic tone, the vascular function is damaged, leading to the occurrence of severe vascular disease.
Animals
;
Blood Pressure
;
Hypertension
;
physiopathology
;
Male
;
Mesenteric Arteries
;
physiopathology
;
Muscle Tonus
;
Muscle, Smooth, Vascular
;
physiopathology
;
Random Allocation
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Time Factors
;
Vasoconstriction
;
physiology
9.In-vivo and ex-vivo studies on region-specific remodeling of large elastic arteries due to simulated weightlessness and its prevention by gravity-based countermeasure.
Fang GAO ; Jiu-Hua CHENG ; Jun-Hui XUE ; Yun-Gang BAI ; Ming-Sheng CHEN ; Wei-Quan HUANG ; Jing HUANG ; Sheng-Xi WU ; Hai-Chao HAN ; Li-Fan ZHANG
Acta Physiologica Sinica 2012;64(1):14-26
The present study was designed to test the hypothesis that a medium-term simulated microgravity can induce region-specific remodeling in large elastic arteries with their innermost smooth muscle (SM) layers being most profoundly affected. The second purpose was to examine whether these changes can be prevented by a simulated intermittent artificial gravity (IAG). The third purpose was to elucidate whether vascular local renin-angiotensin system (L-RAS) plays an important role in the regional vascular remodeling and its prevention by the gravity-based countermeasure. This study consisted of two interconnected series of in-vivo and ex-vivo experiments. In the in-vivo experiments, the tail-suspended, hindlimb unloaded rat model was used to simulate microgravity-induced cardiovascular deconditioning for 28 days (SUS group); and during the simulation period, another group was subjected to daily 1-hour dorso-ventral (-G(x)) gravitation provided by restoring to normal standing posture (S + D group). The activity of vascular L-RAS was evaluated by examining the gene and protein expression of angiotensinogen (Ao) and angiotensin II receptor type 1 (AT1R) in the arterial wall tissue. The results showed that SUS induced an increase in the media thickness of the common carotid artery due to hypertrophy of the four SM layers and a decrease in the total cross-sectional area of the nine SM layers of the abdominal aorta without significant change in its media thickness. And for both arteries, the most prominent changes were in the innermost SM layers. Immunohistochemistry and in situ hybridization revealed that SUS induced an up- and down-regulation of Ao and AT1R expression in the vessel wall of common carotid artery and abdominal aorta, respectively, which was further confirmed by Western blot analysis and real time PCR analysis. Daily 1-hour restoring to normal standing posture over 28 days fully prevented these remodeling and L-RAS changes in the large elastic arteries that might occur due to SUS alone. In the ex-vivo experiments, to elucidate the important role of transmural pressure in vascular regional remodeling and differential regulation of L-RAS activity, we established an organ culture system in which rat common carotid artery, held at in-vivo length, can be perfused and pressurized at varied flow and pressure for 7 days. In arteries perfused at a flow rate of 7.9 mL/min and pressurized at 150 mmHg, but not at 0 or 80 mmHg, for 3 days led to an augmentation of c-fibronectin (c-FN) expression, which was also more markedly expressed in the innermost SM layers, and an increase in Ang II production detected in the perfusion fluid. However, the enhanced c-FN expression and increased Ang II production that might occur due to a sustained high perfusion pressure alone were fully prevented by daily restoration to 0 or 80 mmHg for a short duration. These findings from in-vivo and ex-vivo experiments have provided evidence supporting our hypothesis that redistribution of transmural pressures might be the primary factor that initiates region-specific remodeling of arteries during microgravity and the mechanism of IAG is associated with an intermittent restoration of the transmural pressures to their normal distribution. And they also provide support to the hypothesis that L-RAS plays an important role in vascular adaptation to microgravity and its prevention by the IAG countermeasure.
Angiotensinogen
;
genetics
;
metabolism
;
Animals
;
Aorta, Abdominal
;
pathology
;
physiopathology
;
Carotid Artery, Common
;
pathology
;
physiopathology
;
Hindlimb Suspension
;
Male
;
Muscle, Smooth, Vascular
;
metabolism
;
pathology
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Angiotensin, Type 1
;
genetics
;
metabolism
;
Renin-Angiotensin System
;
physiology
;
Weightlessness Simulation
10.K(ATP) channel action in vascular tone regulation: from genetics to diseases.
Wei-Wei SHI ; Yang YANG ; Yun SHI ; Chun JIANG
Acta Physiologica Sinica 2012;64(1):1-13
ATP-sensitive potassium (K(ATP)) channels are widely distributed in vasculatures, and play an important role in the vascular tone regulation. The K(ATP) channels consist of 4 pore-forming inward rectifier K(+) channel (Kir) subunits and 4 regulatory sulfonylurea receptors (SUR). The major vascular isoform of K(ATP) channels is composed of Kir6.1/SUR2B, although low levels of other subunits are also present in vascular beds. The observation from transgenic mice and humans carrying Kir6.1/SUR2B channel mutations strongly supports that normal activity of the Kir6.1/SUR2B channel is critical for cardiovascular function. The Kir6.1/SUR2B channel is regulated by intracellular ATP and ADP. The channel is a common target of several vasodilators and vasoconstrictors. Endogenous vasopressors such as arginine vasopressin and α-adrenoceptor agonists stimulate protein kinase C (PKC) and inhibit the K(ATP) channels, while vasodilators such as β-adrenoceptor agonists and vasoactive intestinal polypeptide increase K(ATP) channel activity by activating the adenylate cyclase-cAMP-protein kinase A (PKA) pathway. PKC phosphorylates a cluster of 4 serine residues at C-terminus of Kir6.1, whereas PKA acts on Ser1387 in the nucleotide binding domain 2 of SUR2B. The Kir6.1/SUR2B channel is also inhibited by oxidants including reactive oxygen species allowing vascular regulation in oxidative stress. The molecular basis underlying such a channel inhibition is likely to be mediated by S-glutathionylation at a few cysteine residues, especially Cys176, in Kir6.1. Furthermore, the channel activity is augmented in endotoxemia or septic shock, as a result of the upregulation of Kir6.1/SUR2B expression. Activation of the nuclear factor-κB dependent transcriptional mechanism contributes to the Kir6.1/SUR2B channel upregulation by lipopolysaccharides and perhaps other toll-like receptor ligands as well. In this review, we summarize the vascular K(ATP) channel regulation under physiological and pathophysiological conditions, and discuss the importance of K(ATP) channel as a potentially useful target in the treatment and prevention of cardiovascular diseases.
ATP-Binding Cassette Transporters
;
genetics
;
physiology
;
Animals
;
Endotoxemia
;
metabolism
;
physiopathology
;
Humans
;
KATP Channels
;
genetics
;
physiology
;
Mice
;
Mice, Transgenic
;
Muscle, Smooth, Vascular
;
metabolism
;
physiology
;
Potassium Channels, Inwardly Rectifying
;
genetics
;
physiology
;
Receptors, Drug
;
genetics
;
physiology
;
Shock, Septic
;
metabolism
;
physiopathology
;
Sulfonylurea Receptors
;
Vasoconstriction
;
physiology
;
Vasodilation
;
physiology
;
Vasomotor System
;
physiology

Result Analysis
Print
Save
E-mail