1.Effects of insulin on the distribution of actins in vascular smooth muscle cells in the process of proliferation via mitogen-activated protein kinase in vitro.
Xu-Kai WANG ; Yan WANG ; Zuo-Yun HE ; Guang-Yao LIU ; Cheng-Ming YANG
Acta Physiologica Sinica 2002;54(2):165-170
Proliferation of vascular smooth muscle cells (VSMCs) is often accompanied by changes in intracellular actin distribution. The changes are controlled by the signal transduction pathways of protein kinase C/mitogenic activated protein kinase (PKC-MAPK), but the mechanism is unclear. In order to study the effect of insulin on the intracellular signal transduction (PKC-MAPK) probably involved in the modulation of proliferation and redistribution of actins in the VSMCs, the DNA synthesis, MAPK activities and its gene expression, and the redistribution of intracellular actins were investigated in the isolated VSMCs of SHR pretreated with PKC inhibitor and/or insulin, respectively. We found that insulin treatment resulted in proliferation of the VSMCs and an increase in [(3)H] TdR incorporation. Meanwhile, the activities and expression of MAPK increased significantly compared to the control group. These effects of insulin were blocked by PKC inhibitor. In addition, insulin caused a redistribution of the intracellular actins in VSMCs, which was also inhibited by PKC inhibitor. It is, therefore, suggested that these effects of insulin on VSMCs proliferation and distribution of the intracellular actins may be mediated by the MAPK signal transduction pathway.
Actins
;
metabolism
;
Animals
;
Cell Division
;
drug effects
;
In Vitro Techniques
;
Insulin
;
pharmacology
;
Mitogen-Activated Protein Kinases
;
physiology
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
drug effects
;
enzymology
;
metabolism
;
Protein Kinase C
;
physiology
;
Rats
;
Rats, Inbred SHR
;
Tissue Distribution
2.Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway.
Kee Hun DO ; Min Sung KIM ; Jae Ho KIM ; Byung Yong RHIM ; Won Suk LEE ; Chi Dae KIM ; Sun Sik BAE
Experimental & Molecular Medicine 2009;41(8):569-576
Angiotensin II (AngII) is a crucial hormone that affects vasoconstriction and exerts hypertrophic effects on vascular smooth muscle cells. Here, we showed that phosphatidylinositol 3-kinase-dependent calcium mobilization plays pivotal roles in AngII-induced vascular constriction. Stimulation of rat aortic vascular smooth muscle cell (RASMC)-embedded collagen gel with AngII rapidly induced contraction. AngII-induced collagen gel contraction was blocked by pretreatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002) whereas ERK inhibitor (PD98059) was not effective. AngII-induced collagen gel contraction was significantly blocked by extracellular calcium depletion by EGTA or by nifedipine which is an L-type calcium channel blocker. In addition, AngII-induced calcium mobilization was also blocked by nifedipine and EGTA, whereas intracellular calcium store-depletion by thapsigargin was not effective. Finally, pretreatment of rat aortic ring with LY294002 and nifedipine significantly reduced AngII-induced constriction. Given these results, we suggest that PI3K-dependent activation of L-type calcium channels might be involved in AngII-induced vascular constriction.
1-Phosphatidylinositol 3-Kinase/*metabolism/pharmacology
;
Angiotensin II/metabolism/*pharmacology
;
Animals
;
Aorta, Thoracic/*drug effects/physiology
;
Calcium Channels, L-Type/drug effects/*metabolism
;
Muscle Contraction/drug effects
;
Muscle, Smooth, Vascular/drug effects/enzymology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/*drug effects
;
Specific Pathogen-Free Organisms
;
Vasoconstriction/*drug effects
3.Dahuang zhechong pill containing serum inhibited platelet-derived growth factor-stimulated vascular smooth muscle cells proliferation by inducing G1 arrest partly via suppressing protein kinase C α-extracellular regulated kinase 1/2 signaling pathway.
Na LIU ; Jun-tian LIU ; Yuan-yuan JI ; Pei-pei LU
Chinese journal of integrative medicine 2012;18(5):371-377
OBJECTIVETo investigate effects of dahuang zhechong pill ( DHZCP) on the cell cycle and the related signal pathways in vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor (PDGF) with the method of serum pharmacology.
METHODSDNA synthesis in VSMCs was examined by detecting 5'-bromo-2'-deoxyuridine incorporation with the immunocytochemical method. The cycle of VSMCs was evaluated with flow cytometry. Expressions of cyclin D1, p27, protein kinase Cα (PKCα), and phosphorylated extracellular signal regulated kinase 1/2 (ERK1/2) were quantified by Western blot method.
RESULTSDHZCP containing serum significantly inhibited DNA synthesis of PDGF-stimulated VSMCs, arrested the cells in G G(1) phase, modulated the protein expressions of cyclin D D(1) and p27, and suppressed the activation of PKCα and ERK1/2.
CONCLUSIONDHZCP containing serum inhibits VSMCs proliferation via modulating the expressions of cell cycle proteins to arrest the cell in G G(1) phase, which is attributed to, at least in part, suppressing PKCα-ERK1/2 signaling in VSMCs.
Animals ; Aorta, Thoracic ; cytology ; Blood Proteins ; pharmacology ; Cell Proliferation ; drug effects ; Cells, Cultured ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p27 ; metabolism ; DNA ; biosynthesis ; Drugs, Chinese Herbal ; pharmacology ; G1 Phase ; drug effects ; physiology ; MAP Kinase Signaling System ; physiology ; Male ; Muscle, Smooth, Vascular ; cytology ; drug effects ; enzymology ; Platelet-Derived Growth Factor ; pharmacology ; Protein Kinase C-alpha ; metabolism ; Rats ; Rats, Sprague-Dawley
4.C-Jun NH2-Terminal Kinase Contributes to Dexmedetomidine-Induced Contraction in Isolated Rat Aortic Smooth Muscle.
Seong Ho OK ; Young Seok JEONG ; Jae Gak KIM ; Seung Min LEE ; Hui Jin SUNG ; Hye Jung KIM ; Ki Churl CHANG ; Seong Chun KWON ; Ju Tae SOHN
Yonsei Medical Journal 2011;52(3):420-428
PURPOSE: Dexmedetomidine, a full agonist of alpha2B-adrenoceptors, is used for analgesia and sedation in the intensive care units. Dexmedetomidine produces an initial transient hypertension due to the activation of post-junctional alpha2B-adrenoceptors on vascular smooth muscle cells (SMCs). The aims of this in vitro study were to identify mitogen-activated protein kinase (MAPK) isoforms that are primarily involved in full, alpha2B-adrenoceptor agonist, dexmedetomidine-induced contraction of isolated rat aortic SMCs. MATERIALS AND METHODS: Rat thoracic aortic rings without endothelium were isolated and suspended for isometric tension recording. Cumulative dexmedetomidine (10(-9) to 10(-6) M) dose-response curves were generated in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD 98059, p38 MAPK inhibitor SB 203580, c-Jun NH2-terminal kinase (JNK) inhibitor SP 600125, L-type calcium channel blocker (verapamil and nifedipine), and alpha2-adrenoceptor inhibitor atipamezole. Dexmedetomidine-induced phosphorylation of ERK, JNK, and p38 MAPK in rat aortic SMCs was detected using Western blotting. RESULTS: SP 600125 (10(-6) to 10(-5) M) attenuated dexmedetomidine-evoked contraction in a concentration-dependent manner, whereas PD 98059 had no effect on dexmedetomidine-induced contraction. SB 203580 (10(-5) M) attenuated dexmedetomidine-induced contraction. Dexmedetomidine-evoked contractions were both abolished by atipamezole and attenuated by verapamil and nifedipine. Dexmedetomidine induced phosphorylation of JNK and p38 MAPK in rat aortic SMCs, but did not induce phosphorylation of ERK. CONCLUSION: Dexmedetomidine-induced contraction involves a JNK- and p38 MAPK-mediated pathway downstream of alpha2-adrenoceptor stimulation in rat aortic SMCs. In addition, dexmedetomidine-induced contractions are primarily dependent on calcium influx via L-type calcium channels.
Adrenergic alpha-2 Receptor Agonists/*pharmacology
;
Animals
;
Anthracenes/pharmacology
;
Aorta/cytology
;
Dexmedetomidine/*pharmacology
;
Enzyme Inhibitors/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors/physiology
;
Flavonoids/pharmacology
;
Imidazoles/pharmacology
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/*physiology
;
Male
;
*Muscle Contraction
;
Muscle, Smooth, Vascular/drug effects/enzymology/*physiology
;
Protein Isoforms/antagonists & inhibitors/physiology
;
Pyridines/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/physiology