1.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
2.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
3.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
4.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
5.Fine particulate matter induces osteoclast-mediated bone loss in mice
Hye Young MUN ; Septika PRISMASARI ; Jeong Hee HONG ; Hana LEE ; Doyong KIM ; Han Sung KIM ; Dong Min SHIN ; Jung Yun KANG
The Korean Journal of Physiology and Pharmacology 2025;29(1):9-19
Fine particulate matter (FPM) is a major component of air pollution and has emerged as a significant global health concern owing to its adverse health effects. Previous studies have investigated the correlation between bone health and FPM through cohort or review studies. However, the effects of FPM exposure on bone health are poorly understood. This study aimed to investigate the effects of FPM on bone health and elucidate these effects in vitro and in vivo using mice. Micro-CT analysis in vivo revealed FPM exposure decreased bone mineral density, trabecular bone volume/total volume ratio, and trabecular number in the femurs of mice, while increasing trabecular separation. Histological analysis showed that the FPM-treated group had a reduced trabecular area and an increased number of osteoclasts in the bone tissue. Moreover, in vitro studies revealed that low concentrations of FPM significantly enhanced osteoclast differentiation. These findings further support the notion that short-term FPM exposure negatively impacts bone health, providing a foundation for further research on this topic.
6.Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes
Bo-Gyu KIM ; Hoon Sik CHOI ; Yong-ho CHOE ; Hyun Min JEON ; Ji Yeon HEO ; Yun-Hong CHEON ; Ki Mun KANG ; Sang-Il LEE ; Bae Kwon JEONG ; Mingyo KIM
Immune Network 2024;24(4):e32-
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19 + B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
7.Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes
Bo-Gyu KIM ; Hoon Sik CHOI ; Yong-ho CHOE ; Hyun Min JEON ; Ji Yeon HEO ; Yun-Hong CHEON ; Ki Mun KANG ; Sang-Il LEE ; Bae Kwon JEONG ; Mingyo KIM
Immune Network 2024;24(4):e32-
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19 + B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
8.Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes
Bo-Gyu KIM ; Hoon Sik CHOI ; Yong-ho CHOE ; Hyun Min JEON ; Ji Yeon HEO ; Yun-Hong CHEON ; Ki Mun KANG ; Sang-Il LEE ; Bae Kwon JEONG ; Mingyo KIM
Immune Network 2024;24(4):e32-
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19 + B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
9.Target movement according to cervical lymph node level in head and neck cancer and its clinical significance
Hoon Sik CHOI ; Bae Kwon JEONG ; Hojin JEONG ; In Bong HA ; Bong-Hoi CHOI ; Ki Mun KANG
Radiation Oncology Journal 2023;41(4):283-291
Purpose:
To evaluate set-up error for head and neck cancer (HNC) patients according to each neck lymph node (LN) level. And clinical factors affecting set-up error were analyzed.
Materials and Methods:
Reference points (RP1, RP2, RP3, and RP4) representing neck LN levels I to IV were designated. These RP were contoured on simulation computed tomography (CT) and cone-beam CT of 89 HNC patients with the same standard. After image registration was performed, movement of each RP was measured. Univariable logistic regression analyses were performed to analyze clinical factors related to measured movements.
Results:
The mean value of deviation of all axes was 1.6 mm, 1.3 mm, 1.8 mm, and 1.5 mm for RP1, RP2, RP3, and RP4, respectively. Deviation was over 3 mm in 24 patients. Movement of more than 3 mm was observed only in RP1 and RP3. In RP1, it was related to bite block use. Movement exceeding 3 mm was most frequently observed in RP3. Primary tumor and metastatic LN volume change were clinical factors related to the RP3 movement.
Conclusion
Planning target volume margin of 4 mm for neck LN level I, 3 mm for neck LN level II, 5 mm for neck LN level III, and 3 mm for neck LN level IV was required to include all movements of each LN level. In patients using bite block, changes in primary tumor volume, and metastatic LN volume were related to significant movement.
10.Reducing Microbial Contamination in Hematopoietic Stem Cell Products and Quality Improvement Strategy: Retrospective Analysis of 1996-2021 Data
You Keun KO ; Jong Kwon LEE ; Hye Kyung PARK ; Ae Kyung HAN ; Sun Kyoung MUN ; Hye Jeong PARK ; Hae Kyoung CHOUNG ; Se Mi KIM ; Kwang Mo CHOI ; Nam Yong LEE ; Duck CHO ; Dae Won KIM ; Eun-Suk KANG
Annals of Laboratory Medicine 2023;43(5):477-484
Background:
Sterility and safety assurance of hematopoietic stem cell (HSC) products is critical in transplantation. Microbial contamination can lead to product disposal and increases the risk of unsuccessful clinical outcomes. Therefore, it is important to implement and maintain good practice guidelines and regulations for the HSC collection and processing unit in each hospital. We aimed to share our experiences and suggest strategies to improve the quality assurance of HSC processing.
Methods:
We retrospectively analyzed microbial culture results of 11,743 HSC products processed over a 25-year period (January 1996 to May 2021). Because of reorganization of the HSC management system in 2008, the 25-year period was divided into periods 1 (January 1996 to December 2007) and 2 (January 2008 to May 2021). We reviewed all culture results of the HSC products and stored aliquot samples and collected culture results for peripheral blood and catheter samples.
Results:
Of the 11,743 products in total, 35 (0.3%) were contaminated by microorganisms, including 19 (0.5%) of 3,861 products during period 1 and 16 (0.2%) of 7,882 products during period 2. Penicillium was the most commonly identified microorganism (15.8%) during period 1 and coagulase-negative Staphylococcus was the most commonly identified (31.3%) during period 2. HSC product contamination occurred most often during HSC collection and processing.
Conclusions
The contamination rate decreased significantly during period 2, when the HSC management system was reorganized. Our results imply that handling HSC products by trained personnel and adopting established protocols, including quality assurance programs, aid in decreasing the contamination risk.

Result Analysis
Print
Save
E-mail