1.Enlarged multicystic dysplastic kidneys with oligohydramnios during infancy caused by NPHP3 gene mutation.
Youwei BAO ; Xiaoli PAN ; Shuqing PAN ; Danyan ZHUANG ; Haibo LI ; Qitian MU ; Lulu YAN
Chinese Journal of Medical Genetics 2022;39(5):510-513
OBJECTIVE:
To explore the clinical features and genomic abnorm ality of a fetus enlarged multicystic dysplastic kidneys with oligohydramnios caused by NPHP3 gene mutation.
METHODS:
The fetuse was found to have multicystic dysplastic kidneys with oligohydramnios upon ultrasonography during the second trimester. Following induced abortion, fetal tissue was collected for the extraction of DNA, chromosomal microarray analysis (CMA) and whole exome sequencing (WES). Sanger sequencing was used to verify the suspected variants in the family.
RESULTS:
Antenatal ultrasound examination at 19 weeks showed "polycystic" kidneys with Oligohydramnios. Delivery was by induced labour because of the critically low amniotic fluid volume. Testing of CMA was normal. WES showed a compound heterozygous mutation of c.1817G>A, p.W606X; c.432dupA, p.E145Rfs*18 mutations are novel mutations in this study.
CONCLUSION
The research may further expand the NPHP3 gene mutation spectrum. Enlarged multicystic dysplastic kidneys with oligohydramnios caused by NPHP3 gene mutation at least include one or two splice site mutation, frameshift mutation or nonsense mutation foetal poor prognosis.
Amniotic Fluid
;
Female
;
Humans
;
Kidney Diseases, Cystic
;
Multicystic Dysplastic Kidney/genetics*
;
Mutation
;
Oligohydramnios/genetics*
;
Polycystic Kidney Diseases
;
Pregnancy
;
Ultrasonography, Prenatal
2.Application of chromosome microarray analysis for fetuses with multicystic dysplastic kidney.
Feifei CHEN ; Tingying LEI ; Fang FU ; Ru LI ; Yongling ZHANG ; Xiangyi JING ; Xin YANG ; Jin HAN ; Li ZHEN ; Min PAN ; Can LIAO
Chinese Journal of Medical Genetics 2016;33(6):752-757
OBJECTIVETo explore the genetic etiology of fetuses with multicystic dysplastic kidney (MCDK) by chromosome microarray analysis (CMA).
METHODSSeventy-two fetuses with MCDK were analyzed with conventional cytogenetic technique, among which 30 fetuses with a normal karyotype were subjected to CMA analysis with Affymetrix CytoScan HD arrays by following the manufacturer's protocol. The data was analyzed with ChAS software.
RESULTSConventional cytogenetic technique has revealed three fetuses (4.2%) with identifiable chromosomal aberrations. CMA analysis has detected pathogenic CNVs in 5 fetuses (16.7%), which included two well-known microdeletion or microduplication syndromes, i.e., 17q12 microdeletion syndrome and Williams-Beuren syndrome (WBS) and three submicroscopic imbalances at 4q35.2, 22q13.33, and 1p33. PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 are likely the causative genes.
CONCLUSIONCMA can identify the submicroscopic imbalances unidentifiable by conventional cytogenetic technique, and therefore has a significant role in prenatal diagnosis and genetic counseling. The detection rate of pathogenic CNVs in fetuses with MCDK was 16.7% by CMA. 17q12 microdeletion syndrome and WBS are associated with MCDK. Mutations of PEX26, FKBP6, TUBGCP6, ALG12, and CYP4A11 genes may be the causes for MCDK.
Adult ; Chromosomes ; genetics ; Female ; Fetus ; Humans ; Male ; Microarray Analysis ; methods ; Multicystic Dysplastic Kidney ; genetics ; Pregnancy ; Prenatal Diagnosis ; methods ; Young Adult