1.Sex‑related differences of fatty acid‑binding protein 4 and leptin levels in atrial fibrillation: an updated review
Shahab SAIDULLAH ; Binish Ayub AHMAD ; Muhammad Saad WAQAS ; Anam FATIMA ; Malik Hasnat ul Hassan KHAN ; Umer KHIYAM ; Jahanzeb MALIK
International Journal of Arrhythmia 2024;25(1):1-
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia affecting millions of individuals worldwide and posing significant challenges to healthcare systems. The growing body of research has uncovered sex-related differences in AF pathophysiology, including the role of fatty acid-binding protein 4 (FABP4) and leptin as potential biomarkers. FABP4 and leptin, key adipokines involved in cardiovascular health, have been linked to inflammation, oxidative stress, and endothelial dysfunction, all of which may contribute to AF development. These adipokines exhibit sex-specific differences in their concentrations, with females generally showing higher FABP4 levels and males displaying distinct leptin profiles. Furthermore, hormonal influences, particularly estrogen, and testosterone, play significant roles in shaping AF risk and atrial remodeling. Estrogen is associated with cardioprotective effects, while testosterone may exert proarrhythmic effects. Understanding these sex-specific mechanisms could lead to more tailored and effective clinical management of AF. The future of AF research holds promise for precision medicine, novel therapeutic targets, artificial intelligence integration, and personalized care approaches. Emphasizing patient-centered care, telemedicine, and multidisciplinary collaboration can further enhance AF management and improve patient outcomes. In conclusion, recognizing and addressing sex-related factors in AF pathophysiology offer opportunities for gender-responsive interventions and advancements in AF management. Implementing these insights may pave the way for targeted therapies and improved quality of life for individuals affected by AF.
2.Immune-related therapeutics: an update on antiviral drugs and vaccines to tackle the COVID-19 pandemic
Iqra MIR ; Sania AAMIR ; Syed Rizwan HUSSAIN SHAH ; Muhammad SHAHID ; Iram AMIN ; Samia AFZAL ; Amjad NAWAZ ; Muhammad UMER KHAN ; Muhammad IDREES
Osong Public Health and Research Perspectives 2022;13(2):84-100
The coronavirus disease 2019 (COVID-19) pandemic rapidly spread globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is a positive-sense single-stranded RNA virus with a reported fatality rate ranging from 1% to 7%, and people with immune-compromised conditions, children, and older adults are particularly vulnerable. Respiratory failure and cytokine storm-induced multiple organ failure are the major causes of death. This article highlights the innate and adaptive immune mechanisms of host cells activated in response to SARS-CoV-2 infection and possible therapeutic approaches against COVID-19. Some potential drugs proven to be effective for other viral diseases are under clinical trials now for use against COVID-19. Examples include inhibitors of RNA-dependent RNA polymerase (remdesivir, favipiravir, ribavirin), viral protein synthesis (ivermectin, lopinavir/ritonavir), and fusion of the viral membrane with host cells (chloroquine, hydroxychloroquine, nitazoxanide, and umifenovir). This article also presents the intellectual groundwork for the ongoing development of vaccines in preclinical and clinical trials, explaining potential candidates (live attenuated-whole virus vaccines, inactivated vaccines, subunit vaccines, DNA-based vaccines, protein-based vaccines, nanoparticle-based vaccines, virus-like particles and mRNA-based vaccines). Designing and developing an effective vaccine (both prophylactic and therapeutic) would be a long-term solution and the most effective way to eliminate the COVID-19 pandemic.