1.The influence of zoledronic acid on vascular endothelial cell.
Miaojie LANG ; Zhihui ZHOU ; Jingjing MAO ; Manman REN ; Li ZHU ; Yanliang WANG ; Email: ZZH814490194@126.COM.
Chinese Journal of Stomatology 2015;50(7):399-402
OBJECTIVETo investigate the influence of zoledronic acid on vascular endothelial cells.
METHODSThe influence of zoledronic acid on proliferation, migration and adhesion of vascular endothelial cells were tested with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell migration assay and cell adhesion assay. The results of each experimental group were compared with the control group and the data statistically analyzed.
RESULTSIn a concentration of 0-0.5 mmol/L, the absorbance value decreased from 0.09 to 0.34 as the drug concentration increased. Scratch test showed that the change of width of scratch before and after 24 hours in control, low, medium and high concentration groups were (38.7 ± 0.42), (35.8 ± 4.17), (19.9 ± 0.57) mm (P < 0.001), (12.5 ± 3.89) mm (P < 0.05). Adhesion test showed that the absorbance value in control, low, medium and high concentration groups were 1.14 ± 0.18, 0.95 ± 0.13, 0.81 ± 0.11 (P < 0.01), 0.67 ± 0.19 (P < 0.001). Comparisons between control and experimental groups were analyzed by t-test and P values < 0.05 were considered statistically significant.
CONCLUSIONSZoledronic acid inhibits the proliferation, migration and adhesion of vascular endothelial cells.
Cell Adhesion ; drug effects ; physiology ; Cell Movement ; drug effects ; physiology ; Cell Proliferation ; drug effects ; Diphosphonates ; pharmacokinetics ; pharmacology ; Endothelial Cells ; cytology ; drug effects ; Imidazoles ; pharmacokinetics ; pharmacology
3.Effects of Danggui-Shaoyao-San on the Influence of Spatial Learning and Memory Induced by Experimental Tooth Movement.
Hong-Shi LI ; Jie KE ; Gui-Zhi ZHAO ; Li-An WU ; Jun-Ping KOU ; Hong-Chen LIU
Chinese Medical Journal 2015;128(14):1948-1955
BACKGROUNDThe pain caused by orthodontic treatment has been considered as tough problems in orthodontic practice. There is substantial literature on pain which has exactly effected on learning and memory; orthodontic tooth movement affected the emotional status has been showed positive outcomes. Danggui-Shaoyao-San (DSS) is a Traditional Chinese Medicine prescription that has been used for pain treatment and analgesic effect for orthodontic pain via inhibiting the activations of neuron and glia. We raised the hypothesis that DSS could restore the impaired abilities of spatial learning and memory via regulating neuron or glia expression in the hippocampus.
METHODSA total of 36 rats were randomly divided into three groups: (1) Sham group (n = 12), rats underwent all the operation procedure except for the placement of orthodontic forces and received saline treatment; (2) experimental tooth movement (ETM) group (n = 12), rats received saline treatment and ETM; (3) DSS + ETM (DETM) group (n = 12), rats received DSS treatment and ETM. All DETM group animals were administered with DSS at a dose of 150 mg/kg. Morris water maze test was evaluated; immunofluorescent histochemistry was used to identify astrocytes activation, and immunofluorescent dendritic spine analysis was used to identify the dendritic spines morphological characteristics expression levels in hippocampus.
RESULTSMaze training sessions during the 5 successive days revealed that ETM significantly deficits in progressive learning in rats, DSS that was given from day 5 prior to ETM enhanced progressive learning. The ETM group rats took longer to cross target quadrant during the probe trial and got less times to cross-platform than DETM group. The spine density in hippocampus in ETM group was significantly decreased compared to the sham group. In addition, thin and mature spine density were decreased too. However, the DSS administration could reverse the dendritic shrinkage and increase the spine density compared to the ETM group. Astrocytes activation showed the opposite trend in hippocampus dentate gyrus (DG).
CONCLUSIONSTreatment with DSS could restore the impaired abilities on ETM-induced decrease of learning and memory behavior. The decreased spines density in the hippocampus and astrocytes activation in DG of hippocampus in the ETM group rats may be related with the decline of the ability of learning and memory. The ability to change the synaptic plasticity in hippocampus after DSS administration may be correlated with the alleviation of impairment of learn and memory after ETM treatment.
Animals ; Drugs, Chinese Herbal ; pharmacology ; Hippocampus ; drug effects ; physiology ; Male ; Memory ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spatial Learning ; drug effects ; Tooth Movement Techniques ; adverse effects
4.Anesthetic action of volatile anesthetics by using Paramecium as a model.
Miaomiao ZHOU ; Huimin XIA ; Younian XU ; Naixing XIN ; Jiao LIU ; Shihai ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(3):410-414
Although empirically well understood in their clinical administration, volatile anesthetics are not yet well comprehended in their mechanism studies. A major conundrum emerging from these studies is that there is no validated model to assess the presumed candidate sites of the anesthetics. We undertook this study to test the hypothesis that the single-celled Paramecium could be anesthetized and served as a model organism in the study of anesthetics. We assessed the motion of Paramecium cells with Expert Vision system and the chemoresponse of Paramecium cells with T-maze assays in the presence of four different volatile anesthetics, including isoflurane, sevoflurane, enflurane and ether. Each of those volatiles was dissolved in buffers to give drug concentrations equal to 0.8, 1.0, and 1.2 EC50, respectively, in clinical practice. We could see that after application of volatile anesthetics, the swimming of the Paramecium cells was accelerated and then suppressed, or even stopped eventually, and the index of the chemoresponse of the Paramecium cells (denoted as I ( che )) was decreased. All of the above impacts were found in a concentration-dependent fashion. The biphasic effects of the clinical concentrations of volatile anesthetics on Paramecium simulated the situation of high species in anesthesia, and the inhibition of the chemoresponse also indicated anesthetized. In conclusion, the findings in our studies suggested that the single-celled Paramecium could be anesthetized with clinical concentrations of volatile anesthetics and therefore be utilized as a model organism to study the mechanisms of volatile anesthetics.
Anesthetics, Inhalation
;
administration & dosage
;
Biological Assay
;
methods
;
Cell Movement
;
drug effects
;
physiology
;
Chemotaxis
;
drug effects
;
physiology
;
Dose-Response Relationship, Drug
;
Drug Evaluation, Preclinical
;
methods
;
Paramecium tetraurelia
;
drug effects
;
physiology
;
Volatile Organic Compounds
;
administration & dosage
5.Heparin attenuated neutrophil infiltration but did not affect renal injury induced by ischemia reperfusion.
Cheung Soo SHIN ; Jeong Uk HAN ; Jung Lyul KIM ; Paul J SCHENARTS ; Lillian D TRABER ; Hal HAWKINS ; Daniel L TRABER
Yonsei Medical Journal 1997;38(3):133-141
Although heparin is better known as an anticoagulant, it also has several anti-inflammatory effects. Heparin is known to inhibit neutrophil adhesion, chemotaxis and oxygen free radical production. In addition, heparin is also known to act as an oxygen radical scavenger. Our hypothesis was that heparin would attenuate renal ischemia reperfusion injury. In this study, we investigated whether heparin had a protective effect on renal ischemia reperfusion injury. Sheep (n = 12) were prepared for the chronic study with venous, arterial and urinary catheters inserted. In addition, pneumatic occluders and ultrasonic flow probes were placed on renal arteries. After a 5-day recovery period, the sheep were randomized to either a heparin treatment group (400 IU/kg i.v. bolus 10 minutes before renal artery occlusion, followed by a continuous effusion 25,000 IU in 250 ml of 0.9% NaCl at 10 ml/hr, n = 6) or a control group (n = 6), which received an equivalent volume of 0.9% NaCl. All the sheep then underwent 90 minutes of bilateral renal ischemia followed by 24 hours of reperfusion. Blood urea nitrogen (BUN), serum creatinine (Scr), and creatinine clearance (CrCl) were determined at various intervals during both the ischemic and reperfusion periods. Kidney tissue samples were obtained at autopsy for histologic examination. As a result, there were significant differences in the degree of inflammation (1.50 +/- 1.24 Vs 0.50 +/- 0.79, P < 0.05) between the control and heparin treatment groups, but not in the degree of injury (2.83 +/- 0.44 Vs 2.33 +/- 0.28). In this study, heparin significantly attenuated polymorphonuclear leukocytes (PMNs) infiltration within the interstitium, but it did not affect the degree of renal damage as measured by urinary chemistries or renal tubular damage as assessed by histopathologic evaluation.
Animal
;
Anticoagulants/pharmacology*
;
Cell Movement/drug effects
;
Female
;
Heparin/pharmacology*
;
Ischemia/pathology*
;
Kidney/pathology
;
Kidney/drug effects*
;
Neutrophils/physiology
;
Neutrophils/drug effects*
;
Renal Circulation*
;
Reperfusion Injury/pathology*
;
Sheep
6.Danggui-shaoyao-san, a traditional Chinese medicine prescription, alleviates the orthodontic pain and inhibits neuronal and microglia activation.
Hongshi LI ; Zexu GU ; Li'an WU ; Liang XIA ; Kecheng ZHOU ; Lingling E ; Dongsheng WANG ; Junping KOU ; Hongchen LIU
Chinese Medical Journal 2014;127(20):3630-3637
BACKGROUNDThe pain caused by orthodontic treatment has been considered as tough problems in orthodontic practice. Danggui-shaoyao-san (DSS) is a traditional Chinese medicine (TCM) prescription which has long been used for pain treatment and possesses antioxidative, cognitive enhancing and antidepressant effects. We raise the hypothesis that DSS exerts analgesic effect for orthodontic pain via inhibiting the activations of neuron and microglia.
METHODSDSS was given twice a day from day 5 prior to experimental tooth movement (ETM). Directed face grooming and vacuous chewing movements (VCM) were evaluated. Immunofluorescent histochemistry and Western blot analysis were used to quantify the Iba-1 (microglia activation) and Fos (neuronal activation) expression levels in the trigeminal spinal nucleus caudalis (Vc).
RESULTSETM significantly increased directed face grooming and VCM which reached the peak at post-operative day (POD) 1 and gradually decreased to the baseline at POD 7. However, a drastic peak increase of Fos expression in Vc was observed at 4 hours and gradually decreased to baseline at POD 7; while the increased Iba-1 level reached the peak at POD 1 and gradually decreased to baseline at POD 7. Furthermore, pre-treatment with DSS significantly attenuated the ETM induced directed face grooming and VCM as well as the Fos and Iba-1 levels at POD 1.
CONCLUSIONTreatment with DSS had significant analgesic effects on ETM-induced pain, which was accompanied with inhibition of both neuronal and microglial activation.
Animals ; Drugs, Chinese Herbal ; therapeutic use ; Face ; physiology ; Male ; Mastication ; physiology ; Medicine, Chinese Traditional ; methods ; Microglia ; drug effects ; physiology ; Neurons ; drug effects ; physiology ; Pain ; drug therapy ; Pain Management ; methods ; Postoperative Period ; Rats ; Rats, Sprague-Dawley ; Tooth Movement Techniques ; adverse effects
7.Homocysteine alters monocyte-endothelial interaction in vitro.
Xuewei GUO ; Nicholas Peter DUDMAN
Chinese Medical Journal 2003;116(1):34-38
OBJECTIVETo determine whether homocysteine induced endothelial damage through monocyte-endothelial interaction and to characterize both cell types in vitro.
METHODSRadiomethods were performed on monocyte adhesion to/through endothelium and endothelial damage experiments.
RESULTSHomocysteine-treated endothelial cells increased monocyte adhesion and transmigration. Homocysteine-treated monocytes induced endothelial detachment, but this effect was blocked by catalase. These effects were increased with higher concentrations of homocysteine. Monocyte surface glycoprotein antibodies CD11b/CD18 and CD14 inhibited these processes.
CONCLUSIONSHomocysteine alters monocyte-endothelial interaction in vitro, eventually bringing about endothelial damage through release of H(2)O(2). These phenomena are mediated through monocyte surface glycoproteins CD11b/CD18 and CD14. Upregulation of these processes in vivo may contribute to acceleration of atherosclerosis in patients with elevated plasma homocysteine levels.
Arteriosclerosis ; etiology ; Cell Adhesion ; drug effects ; Cell Communication ; drug effects ; Cell Movement ; drug effects ; Dose-Response Relationship, Drug ; Endothelium, Vascular ; cytology ; drug effects ; Homocysteine ; pharmacology ; Humans ; Monocytes ; drug effects ; physiology
8.Oxidized high-density lipoprotein promotes maturation and migration of bone marrow derived dendritic cells from C57BL/6J mice.
Zeng-xiang XU ; Yong-zong YANG ; Da-ming FENG ; Shuang WANG ; Ya-ling TANG ; Fan HE ; Yan XIA ; Fang LI
Chinese Medical Sciences Journal 2008;23(4):224-229
OBJECTIVETo explore the influence of oxidized high-density lipoprotein (oxHDL) on the maturation and migration of bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice.
METHODSThe C57BL/6J mice bone marrow cell suspension was prepared and purified. Recombinant granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant interleukin-4 (rmIL-4) were used to promote monocytes to differentiate and suppress lymphocytes. Then 50 microg/mL oxHDL was added to stimulate BMDCs, using 50 microg/mL high-density lipoprotein (HDL) as homologous protein control, PBS as negative control, and 1 microg/mL lipopolysaccharide (LPS) as positive control. The CD86 and MHCII expression rates were detected with fluorescence-activated cell sorting (FACS). Liquid scintillation counting (LSC) was used in mixed lymphocyte reactions (MLRs) to reflect the ability of BMDCs in stimulating the proliferation of homologous T cells. Levels of cytokines IL-12 and IL-10 were detected by ELISA. The cell migration was evaluated with the transwell system.
RESULTSCompared with PBS group, the expressions of CD86 and MHCII, counts per minute of MLRs, secretion of IL-12 and IL-10, and number of migrated cells in oxHDL group and LPS group significantly increased (all P<0.05), while the increment was less in oxHDL group than LPS group. The number of migrated cells in oxHDL group was about twice of that in HDL group.
CONCLUSIONOxHDL may promote the maturation and migration of BMDCs in vitro.
Animals ; Bone Marrow Cells ; cytology ; drug effects ; physiology ; Cell Differentiation ; drug effects ; Cell Movement ; drug effects ; Cells, Cultured ; Dendritic Cells ; cytology ; drug effects ; physiology ; Humans ; Lipoproteins, HDL ; metabolism ; pharmacology ; Lipoproteins, LDL ; metabolism ; pharmacology ; Mice ; Mice, Inbred C57BL
9.Effects of Nerve Growth Factor on Cardiac Fibroblasts Proliferation, Cell Cycle, Migration, and Myofibroblast Transformation.
Chinese Medical Journal 2018;131(7):813-817
BackgroundRecent research indicates that nerve growth factor (NGF) promotes cardiac repair following myocardial infarction by promoting angiogenesis and cardiomyocyte survival. The purpose of this study was to investigate the effects of NGF on cardiac fibroblasts (CFs) proliferation, cell cycle, migration, and myofibroblast transformation in vitro.
MethodsCFs were obtained from ventricles of neonatal Sprague-Dawley rats and incubated with various concentrations of NGF (0, 0.01, 0.1, 1, 10, and 100 ng/ml; 0 ng/ml was designated as the control group). Cell proliferation and cell cycle of the CFs were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry (FCM), respectively. A cell scratch wound model and transwell were carried out to observe effects of NGF on migration of CFs after 24 h of culture. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to measure α-smooth muscle actin (α-SMA) at mRNA and protein levels after CFs were incubated with various concentrations of NGF.
ResultsExpression of α-SMA measured by RT-PCR and Western blotting significantly increased in the 1 and 10 ng/ml NGF groups (P < 0.05). Absorbance values of CFs showed that NGF did not influence the proliferation of CFs (The Avalues were 0.178 ± 0.038, 0.182 ± 0.011, 0.189 ± 0.005, 0.178 ± 0.010, 0.185 ± 0.025, and 0.177 ± 0.033, respectively, in the 0, 0.01, 0.1, 1, 10, and 100 ng/ml NGF groups [P = 0.800, 0.428, 0.981, 0.596, and 0.913, respectively, compared with control group]), and FCM analysis showed that the percentage of CFs in G0/G1, S, and G2/M phases was not changed (P > 0.05). The cell scratch wound model and transwell showed that CFs migration was not significantly different (P > 0.05).
ConclusionNGF induces myofibroblast transformation but does not influence proliferation, cell cycle, or migration of CFs in vitro.
Actins ; metabolism ; Animals ; Cell Cycle ; drug effects ; physiology ; Cell Movement ; drug effects ; physiology ; Cell Proliferation ; physiology ; Cells, Cultured ; Myofibroblasts ; cytology ; drug effects ; Nerve Growth Factor ; metabolism ; pharmacology ; Rats ; Rats, Sprague-Dawley
10.Effects of oxidized low-density lipoprotein on endothelial progenitor cells survival and activity mediated by lectin-like oxidized low density lipoprotein receptor.
Feng-xia MA ; Qian REN ; Zhong-chao HAN
Acta Academiae Medicinae Sinicae 2007;29(3):336-341
OBJECTIVETo investigate whether oxidized low-density lipoprotein (oxLDL) affects the survival and activity of endothelial progenitor cell (EPC) and whether the effects are mediated by lectin-like oxidized low-density lipoprotein receptor (LOX-1).
METHODSCD34+ cells isolated from human umbilical blood were cultured in endothelial cell growth medium-2 (EGM-2). After 14 days of culture, some EPCs were stimulated with 10, 25, 50 microg/ml of oxLDL for 48 hours; some were preincubated with LOX-1 mAb, a blocking antibody of LOX-1, for 24 hours, then exposed to 50 microg/ml oxLDL for 48 hours; others without any further treatment were used as control. The survival of EPC and the ability of adhesion, migration, and tube formation were examined. The levels of LOX-1 protein and mRNA expression were also assayed.
RESULTSIncubation with oxLDL at concentrations of 25 microg/ml or higher resulted in a dose-dependent increase of EPC apoptosis [25 microg/ml: (15.8 +/- 1.1.0%, 50 microg/ml: (18.8 +/- 2.0)% versus control: (9.0 +/- 1.2)%; P < 0.05]. Treated with oxLDL led to a significantly reduced migratry rate [25 microg/ml: (5.7 +/- 1.0)%, 50 microg/ml: (5.1 +/- 0.8)% versus control: (9.5 +/- 0.8)%; P < 0.05]. EPC treated with oxLDL showed a dose-dependent reduction of adhesion to fibronectin (25 Kg/ml: 33 +/- 2, 50 microg/ml: 30 +/- 3 versus control: 37 +/- 5; P < 0.05). Treatment with oxLDL impaired the in vitro vasculogenesis ability of EPCs. The total length of the tube structures in each photograph was decreased [25 microg/ml: (2.9 +/- 0.5) mm, 50 microg/ml: (1.8 +/- 0.5) mm versus control: (5.0 +/- 0.6) mm; P < 0.05]. The tube structure was severely disrupted, resulting in an incomplete and sparse tube network. However, all the detrimental effects on EPC were attenuated by pretreatment of EPC with LOX-1 mAb. In addition, Western blot analysis revealed that oxLDL increased LOX-1 protein expression from 100% to (172 +/- 8)% at a dose of 50 microg/ml. Furthermore, oxLDL caused an increase in LOX-1 mRNA expression from 100% to (174 +/- 39)% at a dose of 50 microig/ml.
CONCLUSIONOxLDL can directly inhibit EPC survival and activity and these effects are mediated by its receptor, LOX-1.
Antigens, CD34 ; metabolism ; Apoptosis ; Cell Adhesion ; Cell Movement ; Cell Survival ; Cells, Cultured ; Endothelial Cells ; drug effects ; physiology ; Fetal Blood ; cytology ; Humans ; Lipoproteins, LDL ; pharmacology ; physiology ; Neovascularization, Physiologic ; Scavenger Receptors, Class E ; biosynthesis ; physiology ; Stem Cells ; drug effects ; physiology