1.MACS-annexin V cell sorting of semen samples with high TUNEL values decreases the concentration of cells with abnormal chromosomal content: a pilot study.
Sahar EL FEKIH ; Nadia GUEGANIC ; Corinne TOUS ; Habib Ben ALI ; Mounir AJINA ; Nathalie DOUET-GUILBERT ; Hortense DRAPIER ; Damien BEAUVILLARD ; Frédéric MOREL ; Aurore PERRIN
Asian Journal of Andrology 2022;24(5):445-450
We question whether, in men with an abnormal rate of sperm DNA fragmentation, the magnetic-activated cell sorting (MACS) could select spermatozoa with lower rates of DNA fragmentation as well as spermatozoa with unbalanced chromosome content. Cryopreserved spermatozoa from six males were separated into nonapoptotic and apoptotic populations. We determined the percentages of spermatozoa with (i) externalization of phosphatidylserine (EPS) by annexin V-Fluorescein isothiocyanate (FITC) labeling, (ii) DNA fragmentation by TdT-mediated-dUTP nick-end labeling (TUNEL), and (iii) numerical abnormalities for chromosomes X, Y, 13, 18, and 21 by fluorescence in situ hybridization (FISH), on the whole ejaculate and selected spermatozoa in the same patient. Compared to the nonapoptotic fraction, the apoptotic fraction statistically showed a higher number of spermatozoa with EPS, with DNA fragmentation, and with numerical chromosomal abnormalities. Compared to the whole ejaculate, we found a significant decrease in the percentage of spermatozoa with EPS and decrease tendencies of the DNA fragmentation rate and the sum of disomy levels in the nonapoptotic fraction. Conversely, we observed statistically significant higher rates of these three parameters in the apoptotic fraction. MACS may help to select spermatozoa with lower rates of DNA fragmentation and unbalanced chromosome content in men with abnormal rates of sperm DNA fragmentation.
Annexin A5
;
Chromosome Aberrations
;
DNA Fragmentation
;
Humans
;
In Situ Hybridization, Fluorescence
;
In Situ Nick-End Labeling
;
Male
;
Pilot Projects
;
Semen
;
Spermatozoa
2.Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility
Ashok AGARWAL ; Neel PAREKH ; Manesh Kumar PANNER SELVAM ; Ralf HENKEL ; Rupin SHAH ; Sheryl T HOMA ; Ranjith RAMASAMY ; Edmund KO ; Kelton TREMELLEN ; Sandro ESTEVES ; Ahmad MAJZOUB ; Juan G ALVAREZ ; David K GARDNER ; Channa N JAYASENA ; Jonathan W RAMSAY ; Chak Lam CHO ; Ramadan SALEH ; Denny SAKKAS ; James M HOTALING ; Scott D LUNDY ; Sarah VIJ ; Joel MARMAR ; Jaime GOSALVEZ ; Edmund SABANEGH ; Hyun Jun PARK ; Armand ZINI ; Parviz KAVOUSSI ; Sava MICIC ; Ryan SMITH ; Gian Maria BUSETTO ; Mustafa Emre BAKIRCIOĞLU ; Gerhard HAIDL ; Giancarlo BALERCIA ; Nicolás Garrido PUCHALT ; Moncef BEN-KHALIFA ; Nicholas TADROS ; Jackson KIRKMAN-BROWNE ; Sergey MOSKOVTSEV ; Xuefeng HUANG ; Edson BORGES ; Daniel FRANKEN ; Natan BAR-CHAMA ; Yoshiharu MORIMOTO ; Kazuhisa TOMITA ; Vasan Satya SRINI ; Willem OMBELET ; Elisabetta BALDI ; Monica MURATORI ; Yasushi YUMURA ; Sandro LA VIGNERA ; Raghavender KOSGI ; Marlon P MARTINEZ ; Donald P EVENSON ; Daniel Suslik ZYLBERSZTEJN ; Matheus ROQUE ; Marcello COCUZZA ; Marcelo VIEIRA ; Assaf BEN-MEIR ; Raoul ORVIETO ; Eliahu LEVITAS ; Amir WISER ; Mohamed ARAFA ; Vineet MALHOTRA ; Sijo Joseph PAREKATTIL ; Haitham ELBARDISI ; Luiz CARVALHO ; Rima DADA ; Christophe SIFER ; Pankaj TALWAR ; Ahmet GUDELOGLU ; Ahmed M A MAHMOUD ; Khaled TERRAS ; Chadi YAZBECK ; Bojanic NEBOJSA ; Damayanthi DURAIRAJANAYAGAM ; Ajina MOUNIR ; Linda G KAHN ; Saradha BASKARAN ; Rishma Dhillon PAI ; Donatella PAOLI ; Kristian LEISEGANG ; Mohamed Reza MOEIN ; Sonia MALIK ; Onder YAMAN ; Luna SAMANTA ; Fouad BAYANE ; Sunil K JINDAL ; Muammer KENDIRCI ; Baris ALTAY ; Dragoljub PEROVIC ; Avi HARLEV
The World Journal of Men's Health 2019;37(3):296-312
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Antioxidants
;
Classification
;
Clinical Protocols
;
Diagnosis
;
DNA
;
Embryonic Structures
;
Female
;
Fertility
;
Health Expenditures
;
Humans
;
Infertility
;
Infertility, Male
;
Male
;
Membranes
;
Ovum
;
Oxidants
;
Oxidation-Reduction
;
Oxidative Stress
;
Reactive Oxygen Species
;
Reducing Agents
;
Reproductive Health
;
Semen
;
Spermatozoa
;
Subject Headings