1.Subdiaphragmatic vagotomy induces NADPH diaphorase in the rat dorsal motor nucleus of the vagus.
Jeong Won JAHNG ; Dong Goo KIM ; Thomas A HOUPT
Yonsei Medical Journal 2001;42(2):215-219
Axotomy of the vagal motor neurons by cervical vagotomy induces NADPH diaphorase staining due to increased nitric oxide synthase expression in both the rat dorsal motor nucleus and nucleus ambiguous; furthermore, cerical vagotomy leads to cell death of the dorsal motor nucleus cells. Subdiaphragmatic vagotomy axotomizes the vagal motor cells further from the brainstem than cervical vagotomy, and cuts the fibers running only to the abdominal viscera. Here we report that subdiaphragmatic vagotomy is sufficient to induce NADPH diaphorase staining in the dorsal motor nucleus but does not induce staining in the nucleus ambiguus. Because the neurons of the dorsal motor nucleus do not undergo cell death after subdiaphragmatic vagotomy and are able to re-enervate the gut, the increased nitric oxide synthase expression after distal axotomy may be related more to regeneration than degeneration.
Animal
;
Fourth Ventricle/physiology*
;
Fourth Ventricle/enzymology*
;
Fourth Ventricle/cytology
;
Male
;
Motor Neurons/enzymology
;
NADPH Dehydrogenase/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Vagotomy/methods*
;
Vagus Nerve/physiology*
2.Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.
Yan Su GUO ; Dong Xia WU ; Hong Ran WU ; Shu Yu WU ; Cheng YANG ; Bin LI ; Hui BU ; Yue sheng ZHANG ; Chun Yan LI
Experimental & Molecular Medicine 2009;41(3):140-150
A subset of patients of amyotrophic lateral sclerosis (ALS) present with mutation of Cu/Zn superoxide dismutase 1 (SOD1), and such mutants caused an ALS-like disorder when expressed in rodents. These findings implicated SOD1 in ALS pathogenesis and made the transgenic animals a widely used ALS model. However, previous studies of these animals have focused largely on motor neuron damage. We report herein that the spinal cords of mice expressing a human SOD1 mutant (hSOD1-G93A), besides showing typical destruction of motor neurons and axons, exhibit significant damage in the sensory system, including Wallerian-like degeneration in axons of dorsal root and dorsal funiculus, and mitochondrial damage in dorsal root ganglia neurons. Thus, hSOD1-G93A mutation causes both motor and sensory neuropathies, and as such the disease developed in the transgenic mice very closely resembles human ALS.
Amyotrophic Lateral Sclerosis/enzymology/*pathology
;
Animals
;
Axons/*pathology
;
Disease Models, Animal
;
Ganglia, Spinal/pathology
;
Humans
;
Mice
;
Mice, Transgenic
;
Mitochondria/pathology
;
Motor Neurons/metabolism/pathology
;
Mutation
;
Nerve Degeneration/*pathology
;
Sensory Receptor Cells/*pathology
;
Spinal Cord/*pathology
;
Superoxide Dismutase/genetics/*physiology