1.Investigation and optimization on ability of enzymatic hydrolysis of Mori Cortex residue.
Xin-Yao SU ; Chun-Li JIANG ; Ya-Chun XU ; Meng-Chu SUN ; Chen-Hao HUANG ; Jian-Ping XUE ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2018;43(1):86-91
Residue of Mori Cortex was studied to optimize its enzymatic hydrolysis process, and explore its potential as a carbon source for biochemistry and biofuel production. The cellulose content of diluted acid pretreated (DAP) and non-pretreated from Mori Cortex were measured in this study, and the results showed that the cellulose content of DAP and non-pretreated from Mori Cortex were 52.5% and 47%, respectively. This higher cellulose content indicated that residue of Mori Cortex had the potential to act as a carbon source for biochemistry and biofuel production. Enzymatic hydrolysis of pretreated and non-pretreated from Mori Cortex was conducted under different enzyme loading amount. 40 FPU·(g DW)⁻¹ enzyme loading was determined as the optimal amount by comparing the yield of sugar and the rate of enzymolysis. Under this condition, the concentrations of glucose, xylose, arabinose sugar were 23.82, 4.84, 3.6 g·L⁻¹, and the corresponding enzymatic hydrolysis rate was 45.33% which was 2.3 times higher than that of non-pretreated from Morus alba residues. Fed-batch enzymatic hydrolysis was conducted finally to get higher sugar yield, and the final glucose concentration reached up to 38 g·L⁻¹ with the enzymatic hydrolysis rate of 36.19%. The results indicated that Mori Cortex residue had higher cellulose and hemicellulose contents, so it had the potential to become a carbon source to produce the bio-chemicals and biofuels. Through enzymatic hydrolysis, it can be converted into microbial available monosaccharides; and through fermentation, it can be converted into high value-added chemicals, biofuels, etc., to solve the problem of residue pollution, and achieve the sustainable development and greening of Chinese pharmaceutical production process.
Carbohydrates
;
Cellulose
;
chemistry
;
Enzymes
;
metabolism
;
Fermentation
;
Hydrolysis
;
Morus
;
chemistry
2.Identification of novel catalytic features of endo-beta-1,4-glucanase produced by mulberry longicorn beetle Apriona germari.
Amtul Jamil SAMI ; Mohammed Kamran HAIDER
Journal of Zhejiang University. Science. B 2007;8(10):765-770
Mulberry longicorn beetle, Apriona germari, has been reported to produce two endo-beta-1,4-glucanases or AgEGases (accession Nos. Q6SS52 and Q5XQD1). AgEGase sequence contains catalytic motif (amino acid residues 37-48), which is the characteristic of family Glycohydrolase 45 and is identified as the substrate binding site. The application of bioinformatics approaches includes sequence analysis, structural modeling and inhibitor docking to relate the structure and function of AgEGases. We have dissected the sequence and structure of AgEGase catalytic motif and compared it with crystal structure of Humicola insolens endoglucanases V. The results show an involvement of sulfur containing amino acid residues in the active site of the enzyme. Cys residues and position of disulfide bonds are highly conserved between the two structures of endoglucanases of A. germari. Surface calculation of AgEGase structure in the absence of Cys residues reveals greater accessibility of the catalytic site to the substrate involving Asp42, a highly conserved residue. For the inhibition study, tannin-based structure was docked into the catalytic site of AgEGase using ArgusLab 4.0 and it resulted in a stable complex formation. It is suggested that the inhibition could occur through formation of a stable transition state analog-enzyme complex with the tannin-based inhibitor, as observed with other insect cellulases in our laboratory.
Animals
;
Catalysis
;
Coleoptera
;
enzymology
;
Endo-1,3(4)-beta-Glucanase
;
chemistry
;
metabolism
;
Enzyme Activation
;
Enzyme Stability
;
Morus
;
parasitology
3.Establishment of transformation system in mulberry and biosynthesis of quercetin.
Xiangyun LI ; Hong ZHU ; Yiming SUN ; Min SUN
China Journal of Chinese Materia Medica 2010;35(11):1391-1394
OBJECTIVETo establish the transformation system of mulberry, and test its ability of quercetin biosynthesis.
METHODHairy roots of mulberry were obtained through infecting etiolated seedlings with Agrobacterium tumefaciens strain C58C1. The culture condition of hairy roots was optimized. The transformation of T-DNA was examined by PCR assay and quercetin content was determined by HPLC.
RESULTWhen infecting stem cutting of etiolated seedlings via C58C1 strain, the optimal transformation conditions were as follows: 10 minutes' infection, two-days pre-culture and co-culture, additional hydroxylacetosyringone (As) 100 mg x L(-1). The PCR examination result showed that rolB and rolC genes could be inserted into the hairy roots of mulberry. Hairy roots appeared in 10 days after infecting, the frequency of stems explants was up to 92% after 30 days culturing. After 50 days culturing in 1/2MS + 0.05 mg x L(-1) IBA liquid medium, the content of quercetin increased by 8. 5-fold.
CONCLUSIONHairy root culture system of Moraceae plants was established successfully for the first time. In addition, it also provides a foundation for further industrial production of active compounds such as quercetin.
Agrobacterium tumefaciens ; genetics ; metabolism ; Cells, Cultured ; DNA, Bacterial ; genetics ; Gene Targeting ; methods ; Genetic Vectors ; genetics ; metabolism ; Morus ; genetics ; metabolism ; microbiology ; Quercetin ; biosynthesis ; Transformation, Genetic
4.Lipolytic effect of novel extracts from mulberry (Morus alba) leaves fermented with Cordyceps militaris in the primary adipocytes derived from SD rats.
Mi Rim LEE ; Ji Eun KIM ; Woo Bin YUN ; Jun Young CHOI ; Jin Ju PARK ; Hye Ryeong KIM ; Bo Ram SONG ; Young Whan CHOI ; Kyung Mi KIM ; Dae Youn HWANG
Laboratory Animal Research 2017;33(3):270-279
Mulberry (Morus alba) leaves are known to have therapeutic effects on lipid metabolism including lipogenesis, lipolysis and hyperlipidemia. However, novel compounds with strong lipolytic ability among 27 extracts of the mulberry leaves fermented with Cordyceps militaris (EMfCs) have not yet been identified. Therefore, the cAMP concentration and cell viability were measured in the primary adipocytes of SD (Sprague Dawley) rats and 3T3-L1 cells after treatment of 27 EMfCs. Briefly, mulberry leaves powders amended with three different concentrations (0, 25 and 50%) of silkworm pupae (SWP) powder were fermented with 10% C. militaris (v/w) during three different periods (3, 4 and 6 weeks). A total of 27 extracts were obtained from the fermented mulberry leaves powders using three different solvents (dH2O, 50% EtOH and 95% EtOH). Among the 27 EMfCs treated groups, a significant increase in the concentration of cAMP was detected in primary adipocytes treated with 10 extracts when compared with the Vehicle treated group. However, their cAMP concentration did not agree completely with the non-toxicity, although most extracts showed non-toxicity. Furthermore, the concentration of cAMP and level of free glycerol gradually increased in a dose dependent manner (100, 200 and 400 µg/mL) of 4M3-95 contained cordycepin without any significant toxicity. Overall, the results of this study provide strong evidence that 4M3-95 extract derived from EMfCs can stimulate the lipolysis of primary adipocytes at an appropriate concentration and therefore have the potential for use as lipolytic agents to treat obesity.
3T3-L1 Cells
;
Adipocytes*
;
Animals
;
Bombyx
;
Cell Survival
;
Cordyceps*
;
Glycerol
;
Hyperlipidemias
;
Lipid Metabolism
;
Lipogenesis
;
Lipolysis
;
Morus*
;
Obesity
;
Powders
;
Pupa
;
Rats*
;
Solvents
;
Therapeutic Uses
5.Antioxidant Effects and Improvement of Lipid Metabolism of Mulberry fruit, Mulberry Leaves and Silkworm Powder with Different Mixing Ratios in Streptozotocin-Induced Diabetic Rats.
Eun Hye KWON ; Myung Ae JUNG ; Soon Jae RHEE ; Sang Won CHOI ; Sung Hee CHO
The Korean Journal of Nutrition 2006;39(2):91-99
This study was conducted to investigate the effects of mulberry fruit, mulberry leaves and silkworm powder with different mixing ratios on hepatic antioxidative system and lipid metabolism in streptozotocin-induced diabetic rats. Sprague-Dawley male rats weighing 100+/-10 g were induced diabetic by 50 mg/kg bw streptozotocin and randomly assigned to following experimental groups; normal diet group (DM) , 0.3% and 0.6% mulberry fruit diet groups (F and 2F) , 0.3% mulberry leaves diet group (M) , 0.3% silkworm powder diet group (S), 0.15% mulberry fruit + 0.15% mulberry leaves diet group (FM), 0.15% mulberry fruit + 0.15% silkworm powder diet group (FS) , 0.1% mulberry fruit + 0.1% mulberry leaves + 0.1% silkworm powder diet group (FMS) . The experimental diets were fed for 4 weeks. Hepatic SOD activity was not changed significantly by any of single or combined supplementations of mulberry fruit, leaves and silkworm powder but GSH-px and catalase activities were increased by the groups supplemented with two or three of the test ingredients (FM, FS, FMS) as compared with the DM group. Hepatic TBARS value was not reduced significantly by any of the supplementations but lipofuscin contents were significantly reduced in the FM, FS and FMS groups as compared with the DM group. Hepatic mitochondria and microsomal carbonyl values were reduced by the single and combined supplementations of the test ingredients. Hepatic HMG-CoA reductase activities were increased in the all supplementation groups as compared with the DM group. Hepatic total lipid and triglyceride contents were increased but cholesterol contents reduced in the supplemented groups. The effects on the enzyme activities, peroxide or its products and lipid contents were most remarkable in the FMS group. In conclusion, mulberry fruit, mulberry leaves and silkworm powder have the favorable effects on antioxidative system and lipid metabolism in the diabetic liver and the mulberry fruit, leaves and silkworm powder with equal ratio exert the synergistic effect expectedly to prevent diabetic complications.
Animals
;
Antioxidants*
;
Bombyx*
;
Catalase
;
Cholesterol
;
Diabetes Complications
;
Diet
;
Fruit*
;
Humans
;
Lipid Metabolism*
;
Lipofuscin
;
Liver
;
Male
;
Mitochondria
;
Morus*
;
Oxidoreductases
;
Rats*
;
Rats, Sprague-Dawley
;
Streptozocin
;
Thiobarbituric Acid Reactive Substances
;
Triglycerides
6.Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice.
Giuseppe VALACCHI ; Giuseppe BELMONTE ; Clelia MIRACCO ; Hyeyoon EO ; Yunsook LIM
Nutrition Research and Practice 2014;8(1):20-26
Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.
Animals
;
Cholesterol*
;
Cytokines
;
Diet
;
Diet, High-Fat
;
Fruit*
;
Lipid Peroxidation
;
Lipoproteins
;
Liver*
;
Metabolism
;
Mice
;
Mice, Obese*
;
Morus*
;
Obesity
;
Oxidative Stress
;
Receptors, Scavenger
;
Skin*
;
Triglycerides
7.Mechanism of effective components of Mori Folium in alleviating insulin resistance based on JNK signaling pathway.
Ying-Hui LIU ; Xin MOU ; Di-Yi ZHOU ; Cheng-Min SHOU
China Journal of Chinese Materia Medica 2019;44(5):1019-1025
A stable hepatoma cell line(Hep G2 cell) insulin resistance model was established and used to analyze the effect of effective components of Mori Folium in alleviating insulin resistance,and preliminary explore the mechanism for alleviating insulin resistance. The Hep G2 insulin action concentration and the duration of action were investigated using the glucose oxidase method(GOD-POD method) to establish a stable Hep G2 insulin resistance model. Normal control group,model group,Mori Folium polysaccharide group,Mori Folium flavonoid group and rosiglitazone group were divided to determine the glucose consumption. The effect of Mori Folium effective components on Hep G2 insulin resistance was analyzed. The mRNA expressions of JNK,IRS-1 and PDX-1 in each group were detected by Real-time quantitative PCR(qRT-PCR). The protein expressions of p-JNK,IRS-1 and PDX-1 were detected by Western blot. And the mechanism of effective components of Mori Folium in alleviating insulin resistance was investigated. The results showed that the glucose consumption was significantly decreased in the insulin resistance cells after incubation with 25. 0 mg·L-1 insulin for 36 h(P<0. 01),and the model was relatively stable within 36 h. Mori Folium polysaccharides and flavonoids all alleviated insulin resistance,among which Mori Folium flavonoids had better effect in alleviating Hep G2 insulin resistance(P<0. 05). The qRT-PCR analysis showed that Mori Folium polysaccharides and flavonoids could inhibit JNK and IRS-1 mRNA expressions,while enhancing PDX-1 mRNA expression. Western blot analysis displayed that Mori Folium polysaccharides and flavonoids could inhibit p-JNK and IRS-1 protein expressions,while enhancing PDX-1 protein expression. Mori Folium polysaccharides and flavonoids can alleviate insulin resistance in Hep G2 cells,and its mechanism may be the alleviation of insulin resistance by inhibiting JNK signaling pathway.
Drugs, Chinese Herbal
;
pharmacology
;
Glucose
;
Hep G2 Cells
;
Homeodomain Proteins
;
metabolism
;
Humans
;
Insulin
;
Insulin Receptor Substrate Proteins
;
metabolism
;
Insulin Resistance
;
MAP Kinase Kinase 4
;
metabolism
;
MAP Kinase Signaling System
;
Morus
;
chemistry
;
Plant Leaves
;
chemistry
;
Trans-Activators
;
metabolism
8.Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice.
Xufeng SUN ; Masayuki YAMASAKI ; Takuya KATSUBE ; Kuninori SHIWAKU
Nutrition Research and Practice 2015;9(2):137-143
BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-alpha, related to beta-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing beta-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake (0.4 x 10(-5) vs 0.4 x 10(-5) mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.
Adipose Tissue, White
;
Animals
;
Biochemistry
;
Blood Glucose
;
Catechin
;
Cholesterol
;
Diet, High-Fat
;
Fatty Acids, Nonesterified
;
Gene Expression*
;
Glucose*
;
Lipid Metabolism
;
Liver
;
Metabolism*
;
Mice*
;
Morus*
;
NADPH Oxidase
;
Obesity
;
Oxidative Stress
;
Plasma
;
Quercetin*
;
Triglycerides
;
Weights and Measures
9.Effects of quercetin derivatives from mulberry leaves: Improved gene expression related hepatic lipid and glucose metabolism in short-term high-fat fed mice.
Xufeng SUN ; Masayuki YAMASAKI ; Takuya KATSUBE ; Kuninori SHIWAKU
Nutrition Research and Practice 2015;9(2):137-143
BACKGROUND/OBJECTIVES: Mulberry leaves contain quercetin derivatives, which have the effects of reducing obesity and improving lipid and glucose metabolism in mice with obesity. It is not clear whether or not mulberry leaves can directly affect metabolic disorders, in the presence of obesity, because of the interaction between obesity and metabolic disorders. The aim of the current study was to assess the direct action of quercetin derivatives on metabolic disorders in non-obese conditions in short-term high-fat diet fed mice. MATERIALS/METHODS: C57BL/6N mice were fed a high-fat diet, supplemented with either 0% (control), 1%, or 3% mulberry leaf powder (Mul) or 1% catechin powder for five days. Anthropometric parameters and blood biochemistry were determined, and hepatic gene expression associated with lipid and glucose metabolism was analyzed. RESULTS: Body and white fat weights did not differ among the four groups. Plasma triglycerides, total cholesterol, and free fatty acids in the 1%, 3% Mul and catechin groups did not differ significantly from those of the controls, however, plasma glucose and 8-isoprostane levels were significantly reduced. Liver gene expression of gp91phox, a main component of NADPH oxidase, was significantly down-regulated, and PPAR-alpha, related to beta-oxidation, was significantly up-regulated. FAS and GPAT, involved in lipid metabolism, were significantly down-regulated, and Ehhadh was significantly up-regulated. Glucose-metabolism related genes, L-PK and G6Pase, were significantly down-regulated, while GK was significantly up-regulated in the two Mul groups compared to the control group. CONCLUSIONS: Our results suggest that the Mul quercetin derivatives can directly improve lipid and glucose metabolism by reducing oxidative stress and enhancing beta-oxidation. The 1% Mul and 1% catechin groups had similar levels of polyphenol compound intake (0.4 x 10(-5) vs 0.4 x 10(-5) mole/5 days) and exhibited similar effects, but neither showed dose-dependent effects on lipid and glucose metabolism or oxidative stress.
Adipose Tissue, White
;
Animals
;
Biochemistry
;
Blood Glucose
;
Catechin
;
Cholesterol
;
Diet, High-Fat
;
Fatty Acids, Nonesterified
;
Gene Expression*
;
Glucose*
;
Lipid Metabolism
;
Liver
;
Metabolism*
;
Mice*
;
Morus*
;
NADPH Oxidase
;
Obesity
;
Oxidative Stress
;
Plasma
;
Quercetin*
;
Triglycerides
;
Weights and Measures
10.The action mechanisms of Morus alba leaves extract for the treatment of diabetes based on plasma metabolomics.
Tao JI ; Li-li ZHANG ; Xiao-chen HUANG ; Shu-lan SU ; Zhen OUYANG ; Zhen-hua ZHU ; Sheng GUO ; Er-xin SHANG ; Da-wei QIAN ; Jin-ao DUAN
Acta Pharmaceutica Sinica 2015;50(7):830-835
In order to evaluate the effect and mechanism of the mulberry leaf alkaloid, flavones, and polysaccharide intervention on diabetes, the overall metabolite profiling characteristics for the plasma of diabetic mouse was performed by using an ultra-performance liquid chromatography/electrospray-tandem mass spectrometry (UPLC-ESI-MS). The 8 potential biomarkers were found in diabetic mice plasma based on the data of MS/MS characteristics obtained from the UPLC-OrbitrapMS analysis, which mainly involved in sphingolipids, amino acid metabolic pathway. The principal component analysis showed that the normal group and model group were obviously distinguished and implied that metabolic disturbance was happened in diabetic mice plasma. The extracts of mulberry leaf flavonoids, polysaccharide, alkaloid had exhibited the effects of callback function for diabetic mice through regulating the amino acid metabolism and sphingolipid metabolism.
Alkaloids
;
chemistry
;
Amino Acids
;
metabolism
;
Animals
;
Biomarkers
;
blood
;
Chromatography, High Pressure Liquid
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Flavones
;
chemistry
;
Flavonoids
;
chemistry
;
Metabolic Networks and Pathways
;
Metabolomics
;
Mice
;
Morus
;
chemistry
;
Plant Leaves
;
chemistry
;
Sphingolipids
;
metabolism
;
Tandem Mass Spectrometry