1.Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells.
Mengwen SUN ; Weizhen XUE ; Hu MENG ; Xiaoxuan SUN ; Tianlan LU ; Weihua YUE ; Lifang WANG ; Dai ZHANG ; Jun LI
Neuroscience Bulletin 2025;41(1):1-15
Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.
Animals
;
Dentate Gyrus/metabolism*
;
Mice
;
Morphogenesis/physiology*
;
Neurons/pathology*
;
Cell Movement
;
Mice, Inbred C57BL
;
Autism Spectrum Disorder/pathology*
;
Mice, Knockout
;
Neural Stem Cells
;
Male
;
Neurogenesis
;
Autistic Disorder/genetics*
2.Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice.
Mei ZHANG ; Yong ZHANG ; Qian XU ; Joshua CRAWFORD ; Cheng QIAN ; Guo-Hua WANG ; Jiang QIAN ; Xin-Zhong DONG ; Mikhail V PLETNIKOV ; Chang-Mei LIU ; Feng-Quan ZHOU
Neuroscience Bulletin 2023;39(10):1512-1532
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Animals
;
Mice
;
Enhancer of Zeste Homolog 2 Protein/metabolism*
;
Histone Methyltransferases/metabolism*
;
Histones/genetics*
;
Morphogenesis
;
Neuronal Plasticity
;
Neurons/metabolism*
3.FACEts of mechanical regulation in the morphogenesis of craniofacial structures.
Wei DU ; Arshia BHOJWANI ; Jimmy K HU
International Journal of Oral Science 2021;13(1):4-4
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Cell Differentiation
;
Morphogenesis
;
Signal Transduction
;
Skull
;
Tooth
4.USP34 regulates tooth root morphogenesis by stabilizing NFIC.
Shuang JIANG ; Rui SHENG ; Xingying QI ; Jun WANG ; Yuchen GUO ; Quan YUAN
International Journal of Oral Science 2021;13(1):7-7
Tooth root morphogenesis involves two biological processes, root elongation and dentinogenesis, which are guaranteed by downgrowth of Hertwig's epithelial root sheath (HERS) and normal odontoblast differentiation. Ubiquitin-dependent protein degradation has been reported to precisely regulate various physiological processes, while its role in tooth development is still elusive. Here we show ubiquitin-specific protease 34 (USP34) plays a pivotal role in root formation. Deletion of Usp34 in dental mesenchymal cells leads to short root anomaly, characterized by truncated roots and thin root dentin. The USP34-deficient dental pulp cells (DPCs) exhibit decreased odontogenic differentiation with downregulation of nuclear factor I/C (NFIC). Overexpression of NFIC partially restores the impaired odontogenic potential of DPCs. These findings indicate that USP34-dependent deubiquitination is critical for root morphogenesis by stabilizing NFIC.
Cell Differentiation
;
Female
;
Morphogenesis
;
NFI Transcription Factors
;
Odontogenesis
;
Tooth Root
5.Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis.
Journal of Zhejiang University. Medical sciences 2020;49(1):90-99
Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including , and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.
Animals
;
Caenorhabditis elegans
;
cytology
;
Dendrites
;
Mice
;
Morphogenesis
;
Nervous System Diseases
;
physiopathology
;
Neurons
;
cytology
;
Transcription Factors
;
metabolism
6.Optimization of Microenvironments Inducing Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Endothelial Cell-Like Cells
Se Young OH ; Da Hyeon CHOI ; Yoon Mi JIN ; Yeonsil YU ; Ha Yeong KIM ; Gyungah KIM ; Yoon Shin PARK ; Inho JO
Tissue Engineering and Regenerative Medicine 2019;16(6):631-643
BACKGROUND: Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments.METHODS: TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers.RESULTS: Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells.CONCLUSION: This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.
Blood Vessels
;
Blotting, Western
;
Eagles
;
Endothelial Cells
;
Fluorescent Antibody Technique
;
Gelatin
;
Genome
;
Human Umbilical Vein Endothelial Cells
;
Mesenchymal Stromal Cells
;
Morphogenesis
;
Nitric Oxide Synthase Type III
;
Palatine Tonsil
;
Real-Time Polymerase Chain Reaction
;
Serine
;
Stem Cells
7.Generation of novel hyaluronic acid biomaterials for study of pain in third molar intervention: a review
Nadia Sultana SHUBORNA ; Teeranut CHAIYASAMUT ; Watus SAKDAJEYONT ; Chakorn VORAKULPIPAT ; Manus ROJVANAKARN ; Natthamet WONGSIRICHAT
Journal of Dental Anesthesia and Pain Medicine 2019;19(1):11-19
Hyaluronic acid (HA) has long been studied in diverse applications. It is a naturally occurring linear polysaccharide in a family of unbranched glycosaminoglycans, which consists of repeating di-saccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. It is almost ubiquitous in humans and other vertebrates, where it participates in many key processes, including cell signaling, tissue regeneration, wound healing, morphogenesis, matrix organization, and pathobiology. HA is biocompatible, biodegradable, muco-adhesive, hygroscopic, and viscoelastic. These unique physico-chemical properties have been exploited for several medicinal purposes, including recent uses in the adjuvant treatment for chronic inflammatory disease and to reduce pain and accelerate healing after third molar intervention. This review focuses on the post-operative effect of HA after third molar intervention along with its various physio-chemical, biochemical, and pharmaco-therapeutic uses.
Acetylglucosamine
;
Biocompatible Materials
;
Glycosaminoglycans
;
Humans
;
Hyaluronic Acid
;
Molar, Third
;
Morphogenesis
;
Regeneration
;
Vertebrates
;
Wound Healing
8.Ultrastructural aspects of sylvatic dengue virus infection in Vero cell
The Malaysian Journal of Pathology 2019;41(1):41-46
Introduction: Dengue virus (DENV), the causative agent of dengue disease exists in sylvatic and endemic ecotypes. The cell morphological changes and viral morphogenesis of two dengue ecotypes were examined at the ultrastructural level to identify potential similarities and differences in the surrogate model of enzootic host. Materials and Methods: Vero cells were inoculated with virus at a multiplicity of infection (MOI) of 0.1. Cell cultures were harvested over a time course and processed for transmission electron microscopic imaging. Results: The filopodia protrusions on cell periphery preceded virus entry. Additionally, sylvatic DENV infection was found spreading slower than the endemic DENV. Morphogenesis of both dengue ecotypes was alike but at different level of efficiency in the permissive cells. Conclusions: This is the first ultrastructural study on sylvatic DENV and this comparative study revealed the similarities and differences of cellular responses and morphogenesis of two dengue ecotypes in vitro. The study revealed the weaker infectivity of sylvatic DENV in the surrogate model of enzootic host, which supposed to support better replication of enzootic DENV than endemic DENV.
;
viral morphogenesis
9.Coactosin-like protein 1 inhibits neuronal migration during mouse corticogenesis
Guohong LI ; Yupeng YIN ; Jiong CHEN ; Yanle FAN ; Juhong MA ; Yingxue HUANG ; Chen CHEN ; Pengxiu DAI ; Shulin CHEN ; Shanting ZHAO
Journal of Veterinary Science 2018;19(1):21-26
Coactosin-like protein 1 (Cotl1), a member of the actin-depolymerizing factor (ADF)/cofilin family, was first purified from a soluble fraction of Dictyostelium discoideum cells. Neuronal migration requires cytoskeletal remodeling and actin regulation. Although Cotl1 strongly binds to F-actin, the role of Cotl1 in neuronal migration remains undescribed. In this study, we revealed that Cotl1 overexpression impaired migration of both early- and late-born neurons during mouse corticogenesis. Moreover, Cotl1 overexpression delayed, rather than blocked, neuronal migration in late-born neurons. Cotl1 expression disturbed the morphology of migrating neurons, lengthening the leading processes. This study is the first to investigate the function of Cotl1, and the results indicate that Cotl1 is involved in the regulation of neuronal migration and morphogenesis.
Actins
;
Animals
;
Dictyostelium
;
Humans
;
Mice
;
Morphogenesis
;
Neurons
10.Development of the Three-Dimensional Perfusion Culture Technology for the Salivary Ductal Cells
Ji Won KIM ; Jeong Mi KIM ; Jeong Seok CHOI
International Journal of Thyroidology 2018;11(2):160-166
BACKGROUND AND OBJECTIVES: Salivary hypofunction is one of the common side effects after radioiodine therapy, and its pathophysiology is salivary ductal stenosis resulting from ductal cell injury. This study aimed to develop the functional culture environment of human parotid gland ductal cells in in vitro three-dimensional perfusion culture system. MATERIALS AND METHODS: We compared plastic dish culture method and three-dimensional culture system containing Matrigel and nanofiber. Morphogenesis of reconstituted salivary structures was assessed by histomorphometry. Functional characteristics were assessed by immunohistochemistry and reverse transcription polymerase chain reaction (aquaporin 5, CK7, CK18, connexin 43, and p21). In addition, we designed the media perfusion culture system and identified higher rate of cell proliferation and expression of connexin 43 in perfusion system comparing to dish. RESULTS: Human parotid ductal cells were well proliferated with the ductal cell characters under environment with Matrigel. In the presence of Matrigel, aquaporin 5, CK18 and connexin 43 were more expressed than 2D dish and 3D nanofiber setting. In the media perfusion culture system, ductal cells in 3D culture media showed higher cells count and connexin 43 expression compared to 2D dish. CONCLUSION: This in vitro ductal cell perfusion culture system using Matrigel could be used to study for radioiodine induced sialadenitis model in vivo.
Aquaporin 5
;
Cell Proliferation
;
Connexin 43
;
Constriction, Pathologic
;
Culture Media
;
Humans
;
Immunohistochemistry
;
In Vitro Techniques
;
Methods
;
Morphogenesis
;
Nanofibers
;
Parotid Gland
;
Perfusion
;
Plastics
;
Polymerase Chain Reaction
;
Reverse Transcription
;
Salivary Ducts
;
Salivary Glands
;
Sialadenitis
;
Thyroid Neoplasms

Result Analysis
Print
Save
E-mail