1.The proteins of synaptic vesicle membranes are affected during ageing of rat brain.
Sae Ra LEE ; Ah Ram KIM ; Jun Sub KIM ; Jae Bonb KIM ; Jae Yong LEE ; Yun Lyul LEE ; Myeon CHOE ; Jae Bong PARK
Experimental & Molecular Medicine 2001;33(4):220-225
Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.
*Aging
;
Animal
;
Brain/metabolism
;
Calcium/pharmacology
;
Cattle
;
Comparative Study
;
GTP-Binding Proteins/*metabolism
;
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
;
Molecular Weight
;
Phosphorylation/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Synaptic Membranes/*metabolism
;
Synaptosomes/*metabolism
;
cdc42 GTP-Binding Protein/biosynthesis/metabolism
;
rab3A GTP-Binding Protein/metabolism
;
rab5 GTP-Binding Proteins/metabolism
;
rhoA GTP-Binding Protein/biosynthesis/metabolism
2.The proteins of synaptic vesicle membranes are affected during ageing of rat brain.
Sae Ra LEE ; Ah Ram KIM ; Jun Sub KIM ; Jae Bonb KIM ; Jae Yong LEE ; Yun Lyul LEE ; Myeon CHOE ; Jae Bong PARK
Experimental & Molecular Medicine 2001;33(4):220-225
Low molecular weight GTP-binding proteins are molecular switches that are believed to play pivotal roles in cell growth, differentiation, cytoskeletal organization, and vesicular trafficking. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions, i.e. the regulation of cytoskeletal organization in response to extracelluar growth factors and in dendritic neuron development. In this study, we have examined the regulation of small GTP-binding proteins that are implicated in neurosecretion and differentiation of neuron during ageing processes. Comparison of small GTP-binding proteins from the synaptosome and crude synaptic vesicles (LP2 membranes) of 2 months and 20 months old rat brain respectively showed no difference in the level of Rab family proteins (Rab3A and Rab5A). However, Rho family proteins such as RhoA and Cdc42 were elevated in LP2 membranes of the aged brain. The dissociation of Rab3A by Ca2+/calmodulin (CaM) from SV membranes was not changed during aging. Ca2+/CaM stimulated phosphorylation of the 22 and 55-kDa proteins in SV membranes from the aged rat brain, and inhibited phosporylation of 30-kDa proteins. GTPgammaS inhibited phosphorylation of the 100-kDa proteins and stimulated phosphorylation of the 70 kDa in LP2 membranes from both the young and aged rat brains, whereas GDPbetaS caused just the opposite reaction. These results suggest that protein phosphorylation and regulation of Rho family GTPases in rat brain appears to be altered during ageing processes.
*Aging
;
Animal
;
Brain/metabolism
;
Calcium/pharmacology
;
Cattle
;
Comparative Study
;
GTP-Binding Proteins/*metabolism
;
Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
;
Molecular Weight
;
Phosphorylation/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Synaptic Membranes/*metabolism
;
Synaptosomes/*metabolism
;
cdc42 GTP-Binding Protein/biosynthesis/metabolism
;
rab3A GTP-Binding Protein/metabolism
;
rab5 GTP-Binding Proteins/metabolism
;
rhoA GTP-Binding Protein/biosynthesis/metabolism
3.Activation of Neutrophil Menbrane Phospholipase D by Soluble Proteins: Comparison of Cytosolic Neutrophil 50 kDa Factor , ADP-ribosylation Factor and a Novel Brain Factor.
Yong KIM ; Jong Young KWAK ; Tae Hoon G LEE ; Isabel LOPEZ ; J David LAMETH ; Pann Ghill SHU ; Sung Ho RYU
Korean Journal of Immunology 1999;21(3):183-191
GTPrS-dependent phospholipase D activity in human neutrophils was investigated using exogenous phospholipid as a substrate. Both cytosolic and membrane- associated phospholipase D activities were identified. The previously described 50 kDa cytosolic activating factor was resolved chromatographically from the cytosolic phospholipase D. Using exogenous phospholipid as substrate along with chromatographically resolved 50 kDa factor and recombinant ADP-ribosylation factor 1, plasma membrane was required for activity, indicating that the activity which was previously seen using endogenous phospholipid substrate was due to a phospholipase D located in the plasma membrane. In addition, ADP-ribosylation factor and the 50 kDa factor activated synergistically. Using neutrophil plasma membranes, a third regulator of neutrophil membrane phospholipase D was identified from bovine brain cytosol. This factor was resolved from ADP-ribosylation factor and Rho A by successive column chromatographies. The brain factor showed a synergistic effect with the 50 kDa neutrophil activator but an additive effect with recombinant ADP- ribosylation factor. Whether or not ADP-ribosylation factor or the brain factor were present, high activities were seen only when the 50 kDa factor was present, indicating that the 50 kDa cytosolic factor is a major activating factor for the neutrophil plasma membrane phospholipase D.
ADP-Ribosylation Factor 1
;
ADP-Ribosylation Factors*
;
Brain*
;
Cell Membrane
;
Chromatography
;
Cytosol*
;
Fibrinogen
;
Humans
;
Membranes
;
Neutrophils*
;
Phospholipase D*
;
Phospholipases*
4.Rho signaling inhibitor, Y-27632, inhibits invasiveness of metastastic hepatocellular carcinoma in a mouse model.
Feng XUE ; Jian-jun ZHANG ; Feng QIU ; Ming ZHANG ; Xiao-song CHEN ; Qi-gen LI ; Long-zhi HAN ; Zhi-feng XI ; Qiang XIA
Chinese Medical Journal 2007;120(24):2304-2307
Actins
;
chemistry
;
Amides
;
therapeutic use
;
Animals
;
Apoptosis
;
drug effects
;
Cytoskeleton
;
drug effects
;
Enzyme Inhibitors
;
therapeutic use
;
Female
;
Liver Neoplasms, Experimental
;
drug therapy
;
pathology
;
Mice
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Pyridines
;
therapeutic use
;
ras Proteins
;
analysis
;
rho-Associated Kinases
;
analysis
;
antagonists & inhibitors
;
rhoA GTP-Binding Protein
;
analysis
;
rhoC GTP-Binding Protein
5.Lysophosphatidic acid (LPA) stimulates invasion and metastatic colonization of ovarian cancer cells through Rac activation.
Xuechen YU ; Yuanzhen ZHANG ; Huijun CHEN ; Email: KARREL@SINA.COM.
Chinese Journal of Oncology 2015;37(2):95-100
OBJECTIVETo investigate the mechanisms of lysophosphatidic acid (LPA) in stimulating invasion and metastatic colonization of ovarian cancer cells.
METHODSThe metastatic ability in vivo of ovarian cancer SK-OV3, HEY, OVCAR3, and IGROV1 cells was determined in tumor-bearing nude mouse models. Matrigel assay was used to detect the changes of response in vitro of ovarian cancer cells to LPA after Rac(-) or Rac(+) adenovirus treatment. LPA-induced Rho GTPase activation was detected by GST-fusion protein binding assay.
RESULTSThe peritoneal metastatic colonization assay showed overt metastatic colonization in mice receiving SK-OV3 and HEY cell inoculation, indicating that they are invasive cells. Metastatic colonization was not detected in animals receiving OVCAR3 and IGROV1 cells, indicating that these cells are non-invasive cells. In the matrigel invasion assay, exposure to LPA led to a notably greater migratory response in metastatic SK-OV3 and HEY cells (Optical density: SK-OV3 cells: 0.594±0.023 vs. 1.697±0.049, P<0.01; HEY cells: 0.804±0.070 vs. 1.851±0.095, P<0.01). But LPA did little in the non-metastatic OVCAR3 and IGROV1 cells (Optical density A: OVCAR3 cells: 0.336±0.017 vs. 0.374±0.007, P>0.05; IGROV1 cells: 0.491±0.036 vs. 0.479±0.061, P>0.05). LPA migratory responses of ovarian cancer cells were closely related to their metastatic colonization capabilities (r = 0.983, P<0.05). Rac(-) blocked the LPA response of invasive SK-OV3 and HEY cells (LPA-induced fold increase of cell migration: SK-OV3 cells: 2.988±0.095 vs. 0.997±0.100,P=0.01; HEY cells: 2.404±0.059 vs. 0.901±0.072, P=0.01). But Rac(+) confered the non-invasive cells with LPA response and invasion capability (LPA-induced fold increase of cell migration: OVCAR3 cells: 1.072±0.080 vs. 1.898±0.078, P<0.01; IGROV1 cells: 1.002±0.044 vs. 2.141±0.057, P<0.05). Among Rho GTPases, only Rac activation was different between ovarian cancer cell lines with different metastatic capability after LPA stimulation: Cdc42 could not be activated in both the invasive and non-invasive cell lines. RhoA could be activated in both the invasive and non-invasive cell lines. Rac could be activated by LPA in the invasive ovarian cancer cell lines. However, Rac could not be activated in the non-invasive cell lines.
CONCLUSIONLysophosphatidic acid stimulates invasion and metastasis of ovarian cancer cells through Rac activation.
Animals ; Cell Movement ; Female ; Humans ; Lysophospholipids ; metabolism ; Mice ; Ovarian Neoplasms ; metabolism ; Tumor Cells, Cultured ; rho GTP-Binding Proteins ; rhoA GTP-Binding Protein
6.Correlation of expression of RhoA (RhoC and their effector ROCK-1 with malignant phenotype of ovarian cancer cells in vitro.
Zhi-qiang HAN ; A-li ZHANG ; Ming-fu WU ; Yu-lan LIU ; Gang CHEN ; Fu-jun LI ; Qing-lei GAO ; Guo-ning LIAO ; Yun-ping LU ; Shi-xuan WANG ; Ding MA
Chinese Journal of Oncology 2004;26(7):385-388
OBJECTIVETo investigate the expression of RhoA, RhoC and their effector ROCK-1 in four ovarian cancer cell lines in vitro and their correlation with invasiveness.
METHODSExpression of RhoA, RhoC and ROCK-1 mRNA and protein in four ovarian cancer cell lines SW626, Skov-3, A2780 and Caov-3 was detected by RT-PCR and Western blot assay. Invasion assay was done in Boyden chamber.
RESULTSThe expression levels of RhoA, RhoC and ROCK-1 mRNA and protein varied in the four different cell lines examined. The expression level of RhoC, but not RhoA and ROCK-1, was significantly correlated with the invasive capability of these cells in vitro (r = 0.95, P < 0.01). Expression of RhoA at the level of transcription was not correlated with that at the translation level. The expression of RhoA and RhoC did not correlate with that of ROCK-1.
CONCLUSIONExpression level of RhoC may serve as an independent parameter in evaluating metastasis and become a new target in inhibiting ovarian cancer metastasis.
Cell Line, Tumor ; Cell Movement ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Intracellular Signaling Peptides and Proteins ; Neoplasm Invasiveness ; Neoplasm Metastasis ; Ovarian Neoplasms ; genetics ; metabolism ; pathology ; Phenotype ; Protein Biosynthesis ; Protein-Serine-Threonine Kinases ; biosynthesis ; genetics ; RNA, Messenger ; biosynthesis ; genetics ; Transcription, Genetic ; rho GTP-Binding Proteins ; biosynthesis ; genetics ; rho-Associated Kinases ; rhoA GTP-Binding Protein ; biosynthesis ; genetics ; rhoC GTP-Binding Protein
7.Effects of Rheb overexpression in HL-60 and K562 leukemia cell lines.
Qiao-Zhu XU ; Xiao-Min WANG ; Fang-Fang WANG ; Ya-Nan GAO ; Ying-Chi ZHANG ; Zhen-Yu JU ; Tao CHENG ; Wei-Ping YUAN ; Han-Zhi LIU
Journal of Experimental Hematology 2013;21(2):268-272
mTOR (mammalian target of rapamycin) is the center for cellular activities. It controls many cell activities via inhibiting apoptosis and promoting cell growth. Rheb can activate mTOR signaling pathway and participate in genesis and development of multiple cancers. This study was purposed to explore the underlying role of Rheb in human myeloid leukemia by using the myeloid leukemia cell lines. Two myeloid leukemia cell lines HL-60 and K562 overexpressing Rheb were established with retrovirus containing Rheb. The mRNA and protein expressions of Rheb were determined by Real-Time PCR and Western blot respectively. Cell proliferation rate was examined by CCK-8 assay and apoptosis rate was analyzed using Annexin V and 7-AAD double-staining. The results showed that Rheb was overexpressed in both HL-60 and K562 cell lines. The Rheb overexpression cell lines were successfully established. It is found that overexpression of Rheb could promote cell growth. Furthermore, the overexpression of Rheb could accelerate cells entering into G2/M phase (P < 0.01), while did not affect the apoptosis. It is concluded that Rheb overexpression promotes myeloid leukemia cell proliferation through accelerating cell cycle progression.
Cell Cycle
;
Cell Proliferation
;
HL-60 Cells
;
Humans
;
K562 Cells
;
Monomeric GTP-Binding Proteins
;
metabolism
;
Neuropeptides
;
metabolism
;
Ras Homolog Enriched in Brain Protein
;
Signal Transduction
8.RhoA-Rho kinase signaling pathway mediates adventitial fibroblasts differentiation to myofibroblasts induced by TGF-β1.
Wen-Dong CHEN ; Yu-Feng CHU ; Jian-Jun LIU ; Mo-Na HONG ; Ping-Jin GAO
Acta Physiologica Sinica 2013;65(2):113-121
Vascular adventitial fibroblasts (AF) differentiation to myofibroblasts (MF) is the critical physiopathologic feature of vascular remodeling. This study was to investigate the role of RhoA-Rho kinase signaling pathway in AF differentiation to MF induced by transforming growth factor β1 (TGF-β1). The results showed that TGF-β1 up-regulated total RhoA protein expression and RhoA activity in cultured AF by Western blotting and Rho pull-down assay, respectively. TGF-β1 up-regulated phospho-Myosin phosphatase target subunit (MYPT1, a downstream substrate of Rho kinase) expression without altering Rho kinase protein expression, indicating TGF-β1 induced the enhancement of activity of Rho kinase. Ad-N19RhoA-hrGFP virus infection and Y27632, a specific inhibitor of Rho kinase, dose-dependently inhibited TGF-β1-induced α-SM-actin and Calponin expression, as markers of MF differentiation. In conclusion, the RhoA-Rho kinase pathway is involved in AF differentiation to MF induced by TGF-β1.
Actins
;
metabolism
;
Adventitia
;
cytology
;
Calcium-Binding Proteins
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Fibroblasts
;
cytology
;
Microfilament Proteins
;
metabolism
;
Myofibroblasts
;
cytology
;
Signal Transduction
;
Transforming Growth Factor beta1
;
pharmacology
;
Up-Regulation
;
rho-Associated Kinases
;
metabolism
;
rhoA GTP-Binding Protein
;
metabolism
9.Effects of RhoA/Rho-kinase in the regulation of penile erection.
National Journal of Andrology 2007;13(6):546-549
The erectile response of the penis depends on a balance between vasoconstrictor agents, which cause cavernosal smooth muscle to contract limiting blood inflow, and vasodilators, which relax cavernosal smooth muscle leading to increased blood inflow and erection. This review emphasizes the role of the RhoA/Rho-kinase pathway in the cavernosal circulation. While it is widely held that the nitric oxide-cyclic GMP-protein kinase G(NO-cGMP-PKG) pathway mediates vasorelaxation and penile erection, the vasoconstrictor actions of endothelin ET-1 and NE are reported to be mediated by the RhoA/Rho-kinase pathway in the cavernosal circulation and NO relax cavernosal smooth by inhibition of Rho-kinase. The application of Rho-kinase inhibitor on the penile erection may represent a new and promising method of treatment for erectile dysfunction.
Animals
;
Erectile Dysfunction
;
physiopathology
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
physiology
;
Male
;
Nitric Oxide
;
physiology
;
Penile Erection
;
physiology
;
Protein-Serine-Threonine Kinases
;
physiology
;
rho-Associated Kinases
;
rhoA GTP-Binding Protein
;
physiology
10.Serum response factor participates in RhoA-induced endothelial cell F-actin rearrangements.
Ya-Ling HAN ; Hai-Bo YU ; Cheng-Hui YAN ; Zi-Min MENG ; Xiao-Lin ZHANG ; Jian KANG ; Shao-Hua LI ; Shi-Wen WANG
Acta Physiologica Sinica 2005;57(3):295-302
RhoA is one of the main members of RhoGTPase family involved in cell morphology, smooth muscle contraction, cytoskeletal microfilaments and stress fiber formation. It has been demonstrated that RhoA modulates endothelial cell permeability by its effect on F-actin rearrangement, but the molecular mechanism of rearrangement of actin cytoskeleton remains unclear. Recent studies prove that RhoA/Rho kinase regulates smooth muscle specific actin dynamics by activating serum response factor (SRF)-dependent transcription. To further investigate the molecular mechanism of the rearrangement of vascular endothelial cell actin cytoskeleton, we explored the relationship between the activation of SRF and F-actin rearrangement induced by RhoA in human umbilical vein endothelial cells (HUVECs). HUVECs were infected with the constitutively active forms of RhoA (Q63LRhoA) or the dominant negative forms of RhoA(T19NRhoA) using retrovirus vector pLNCX-Q63LRhoA or pLNCX-T19NRhoA, the positive clone was obtained by G418 selection. The expression and distribution of SRF in normal and infected cells were evaluated by immunohistochemistry and Western blot in complete medium and in serum-free medium. The effect of F-actin polymerization was detected by Rhodamine-Phalloidine staining. Infection of PLNCX-Q63LRhoA induced F-actin rearrangement and stress fiber formation in HUVECs, as well as enhanced the expression of SRF in the nuclei. In contrast, the cells infected with T19NRhoA showed no distinct changes. With serum deprivation, the expression of SRF increased obviously in both normal and infected HUVECs, but the subcellular localization of SRF was evidently different. In HUVECs, the localization of SRF was in the nuclei after 3 d with serum deprivation, but it was redistributed outside the nuclei after 5 d with serum deprivation. In cells infected with Q63LRhoA, the immunolocalization of SRF was always in the nuclei compared with HUVECs infected with T19NRhoA, which was almost always localized in the cytoplasm. In HUVECs, the rearrangement of F-actin and formation of stress fiber increased after 3 d with serum deprivation, but appeared decreased and unpolymerized after 5 d with serum deprivation. The polymerization of F-actin and the formation of stress fiber in HUVECs infected with Q63LRhoA kept during the period of serum-free culture, whereas the rearrangement of F-actin in cells infected with T19NRhoA was not found. These results suggest that RhoA influences endothelial F-actin rearrangement in part by regulating the expression and subcellular localization of SRF.
Actins
;
biosynthesis
;
genetics
;
Cytoskeleton
;
metabolism
;
Endothelium, Vascular
;
cytology
;
metabolism
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Serum Response Factor
;
biosynthesis
;
genetics
;
Umbilical Veins
;
cytology
;
rho-Associated Kinases
;
rhoA GTP-Binding Protein
;
physiology