1.Arsenic trioxide regulates the production and activities of matrix metalloproteinases-1, -2, and -9 in fibroblasts and THP-1.
Ya-hui LIANG ; Ping LI ; Jing-xia ZHAO ; Miao-ke DAI ; Qi-fu HUANG
Chinese Medical Journal 2012;125(24):4481-4487
BACKGROUNDThe elevated matrix metalloproteinase (MMP) activity is an important cause of chronic wound healing failure. Arsenolite, whose main component is arsenic trioxide (As2O3), is a common traditional Chinese medicine wildly used in treating chronic wounds; it can remove necrotic tissue and promote tissue regeneration. This research was designed to evaluate the effects of As2O3 on production and activities of MMP-1, MMP-2 and MMP-9, and on regulation of its signal transduction pathway in human skin fibroblasts (HSFb) and human monocyte line (THP-1 cells) that were in an inflammatory state.
METHODSWe established three cell models; HSFb activated by TNF-α, THP-1 cells activated by phorbol 12-myristate 13-acetate (PMA) and an HSFb-THP-1 co-culture system. Three cell models was cultured with As2O3 for 24 hours. The levels of MMP-1, MMP-2, MMP-9, TNF-α and IL-1β in the cell culture supernatants were assayed by ELISA. The mRNA expressions of MMP-1, MMP-2 and MMP-9 were determined by RT-PCR. The activities of MMP-2 and MMP-9 were tested by Gelatin zymography assays. The phosphorylation levels of ERK1/2 and p38MAPK were assayed by Western blotting.
RESULTSAs2O3 inhibited the expression of MMP-1, MMP-2 and MMP-9 mRNA, the secretion and activity of MMP-1, MMP-2 and MMP-9 in HSFb and THP-1 cells in the inflammatory state (P < 0.05 and P < 0.01 respectively). It also inhibited the secretion of TNF-α and IL-1β in THP-1 cells and in the co-culture system (P < 0.05 and P < 0.01, respectively). It also decreased the phosphorylation of ERK1/2 and p38 MAPK in HSFb and THP-1 cells (P < 0.05 and P < 0.01, respectively).
CONCLUSIONSAs2O3, as a main component of arsenolite, can inhibit the production of MMPs by HSFb and THP-1 cells in an inflammatory state through inhibiting the release of inflammatory factors and the activation of the MAPK cascade pathway. This may be a possible mechanism for arsenolite healing chronic wounds.
Arsenicals ; pharmacology ; Cell Line ; Cells, Cultured ; Electrophoresis, Polyacrylamide Gel ; Fibroblasts ; drug effects ; enzymology ; Humans ; Interleukin-1 ; metabolism ; Matrix Metalloproteinase 1 ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Monocytes ; drug effects ; enzymology ; Oxides ; pharmacology ; Tumor Necrosis Factor-alpha ; metabolism
2.Effect of spearmint oil on lipopolysaccharide induced emphysema-like changes and expression of matrix metalloproteinase-9.
Junbo LIU ; Yan WANG ; Fadi TANG ; Chenxi YU ; Mengshan HUANG ; Xiaojing ZHAO ; Youfa ZHU
China Journal of Chinese Materia Medica 2011;36(8):1054-1059
OBJECTIVETo investigate the effect of spearmint oil on emphysema-like changes and the expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta(IL-1beta), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-9) in lipopolysaccharide (LPS) treated rats.
METHODEmphysematous changes model was induced by intratracheal instillation of LPS once a week for up to 8 weeks in rats. Rats were divided into control, dexamethasone (0.3 mg x kg(-1)), and spearmint oil (10, 30,100 mg x kg(-1)) groups. Each group was treated with saline, dexamethasone, and spearmint of oil respectively for 4 weeks. Then total and different white blood cell counts in bronchoalveolar lavage fluid(BALF) were carried out. The pathologic changes of lung tissue such as alveolar structure, airway inflammation, and goblet cell metaplasia were observed by HE and AB-PAS staining. Expression of TNF-alpha, IL-1beta, TIMP-1 and MMP-9 were measured.
RESULTBoth spearmint and dexamethasone decreased the destruction of pulmonary alveolus. The total and different white blood cell counts in BALF including neutrophile and lymphocyte of spearmint oil 100 mg x kg(-1) and dexamethasone group were significantly reduced, and the goblet cell metaplasia was also inhibited. Dexamethasone had inhibitory effect on the expression of TNF-alpha, IL-1beta, TIMP-1 and MMP-9. Spearmint oil 30, 100 mg x kg(-1) significantly reduced TNF-alpha and IL-1beta respectively. Spearmint oil 10, 30 and 100 mg x kg(-1) had no effect on the expression of TIMP-1, but could decrease the expression of MMP-9 significantly in lung tissues.
CONCLUSIONSpearmint oil has protective effect on rats with emphysematous changes, since it improves alveolar destruction, pulmonary inflammation, and goblet cell metaplasia. The mechanism may include reducing TNF-alpha, IL-1beta content and inhibiting overexpression of matrix metalloproteinase-9 in lung tissues.
Animals ; Azo Compounds ; pharmacology ; Bronchoalveolar Lavage Fluid ; cytology ; Goblet Cells ; drug effects ; Interleukin-1beta ; drug effects ; metabolism ; Leukocytes ; drug effects ; metabolism ; Lipopolysaccharides ; Lymphocytes ; drug effects ; metabolism ; Matrix Metalloproteinase 9 ; drug effects ; metabolism ; Mentha spicata ; chemistry ; Metaplasia ; Monocytes ; drug effects ; metabolism ; Neutrophils ; drug effects ; metabolism ; Phytotherapy ; Plant Oils ; therapeutic use ; Pulmonary Emphysema ; chemically induced ; drug therapy ; enzymology ; pathology ; Rats ; Respiratory System ; drug effects ; pathology ; Tissue Inhibitor of Metalloproteinase-1 ; drug effects ; metabolism ; Tumor Necrosis Factor-alpha ; drug effects ; metabolism
3.Suppression of HIV-1 Tat-induced monocyte adhesiveness by a cell-permeable superoxide dismutase in astrocytes.
Ha Yong SONG ; Sung Mi JU ; Ji Ae LEE ; Hyung Joo KWON ; Won Sik EUM ; Sang Ho JANG ; Soo Young CHOI ; Jinseu PARK
Experimental & Molecular Medicine 2007;39(6):778-786
HIV-1 Tat is considered to be one of key players to facilitate monocyte entry into the CNS, which is characteristic feature of AIDS-related encephalitis and dementia. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the HIV-1 Tat-induced signaling pathways leading to NF-kappaB activation, expression of adhesion molecules, and monocyte adhesion in CRT-MG human astroglioma cells by using cell-permeable SOD. When cell-permeable SOD was added to the culture medium of CRT-MG cells, it rapidly entered the cells in dose- and time-dependent manners. Treatment of astrocytes with cell-permeable SOD led to decrease in Tat-induced ROS generation as well as NF-kappaB activation. Cell-permeable SOD inhibited the activation of MAP kinases including ERK, JNK and p38 by HIV-1 Tat. Treatment of CRT-MG cells with cell-permeable SOD significantly inhibited protein and mRNA levels of ICAM-1 and VCAM-1 up-regulated by HIV-1 Tat, as measured by Western blot analysis and RT-PCR. Furthermore, enhanced adhesiveness of monocyte to astrocyte by HIV-1 Tat was significantly abrogated by pretreatment with cell-permeable SOD fusion proteins. These data indicate that SOD has a regulatory function for HIV-1 Tat-induced NF-kappaB activation in astrocytes and suggest that cell-permeable SOD can be used as a feasible therapeutic agent for regulation of ROS-related neurological diseases.
Astrocytes/*enzymology
;
Cell Adhesion/*physiology
;
Cell Membrane Permeability
;
Gene Products, tat/*pharmacology
;
HIV Infections/metabolism
;
HIV-1/*chemistry
;
Humans
;
Monocytes/cytology/*drug effects
;
Signal Transduction
;
Superoxide Dismutase/genetics/*physiology
4.Influence of rhG-CSF on activity of sphingosine kinase in monocytes.
Wen-Rong HUANG ; Li-Sheng WANG ; Hai-Feng DUAN ; Chun-Ji GAO ; Zhuo-Zhuang LU ; Hua WANG ; Wan-Ming DA
Journal of Experimental Hematology 2007;15(1):156-159
The aim of this research was to understand the influence of rhG-CSF on the sphingosine kinase (SphK) activity of monocytes. The peripheral blood monocytes were collected from 6 peripheral blood progenitor cell donors on the fifth day of mobilization with rhG-CSF and from 5 blood donors' buffy coats. The mRNA expressions of monocyte G-CSF receptor and SphK were tested with RT-PCR. The changes of SphK activity of monocytes were assayed after being treated with rhG-CSF. The results showed that the two kinds monocytes collected from both blood donors and peripheral blood progenitor cell donors mobilized with rhG-CSF expressed mRNA of G-CSF receptor and SphK. The SphK activity of monocytes collected from blood donors was not changed significantly after being treated with rhG-CSF (P > 0.05). The SphK activity of monocytes collected from peripheral blood progenitor cell donors transiently increased by (39.6 - 87.2)% after being treated by means of rhG-CSF (P < 0.05) without obviously dose-dependent effect. It is concluded that the SphK activity of monocytes collected from peripheral blood progenitor cell donors can be activated by rhG-CSF.
Granulocyte Colony-Stimulating Factor
;
pharmacology
;
Hematopoietic Stem Cell Mobilization
;
Humans
;
Monocytes
;
cytology
;
enzymology
;
Phosphotransferases (Alcohol Group Acceptor)
;
drug effects
;
metabolism
;
Receptors, Granulocyte Colony-Stimulating Factor
;
biosynthesis
;
genetics
;
Recombinant Proteins
5.Correlation between Fc γ R III a and aortic atherosclerotic plaque destabilization in ApoE knockout mice and intervention effects of effective components of chuanxiong rhizome and red peony root.
Ye HUANG ; Hui-jun YIN ; Xiao-juan MA ; Jing-shang WANG ; Qian LIU ; Cai-feng WU ; Ke-ji CHEN
Chinese journal of integrative medicine 2011;17(5):355-360
OBJECTIVETo explore the correlation between Fc γ RIII A (CD16A) and aortic atherosclerotic plaque destabilization in apoE knockout (apoE KO) mice and the intervention effects of effective components of chuanxiong rhizome and red peony root.
METHODSEight 8-week-old male C57BL/6J mice were selected as the control group. Forty 8-week-old male apoE KO mice were randomly divided into the model group, apoE KO + intraperitoneal injection immunoglobulin group (IVIG), apoE KO + simvastatin group (Sm), apoE KO + high dosage of xiongshao capsule (XSC) group (XSCH), and apoE KO + low dosage of XSC group (XSCL), 8 mice in each group. Mice in the control group were put on a normal diet, and others were fed with a high-fat diet. After 10-week different interventions, monocyte CD16 expression was detected by flow cytometry, aortic matrix metalloproteinase-9 (MMP-9) mRNA expression was detected using reverse transcription polymerase chain reaction, and serum tumor necrosis factor (TNF)-α level was detected using enzyme-linked immunosorbent assay.
RESULTSCompared with the control group, monocyte CD16 expression, aortic MMP-9 mRNA expression, and serum TNF-α level in the model group increased obviously (P<0.01). Injections of apoE KO mice with intraperitoneal immunoglobulin during a 5-day period significantly reduced the monocyte CD16 expression, aortic MMP-9 mRNA expression, and serum TNF-α level (P<0.01 or 0.05) over a 10-week period of high-fat diet. Indices above in the Sm group, XSCH group, and XSCL group decreased in a different degree. Of them, the aortic MMP-9 mRNA expression in XSCH group was lower than that in Sm group (P<0.05) and the monocyte CD16 expression and serum TNF-α level showed no significant difference between XSCH group and Sm group (P>0.05). Correlation analyses suggested positive correlation between monocyte CD16 expression and aortic MMP-9 mRNA expression or serum TNF-α level in IVIG group, XSCH group, and XSCL group.
CONCLUSIONSFcγR III A mediates systemic inflammation in the progression of coronary heart disease with blood stasis syndrome. XSC could stabilize atherosclerotic plaque by suppressing inflammation and its target was relative with FcγRIII A.
Animals ; Aorta ; drug effects ; enzymology ; pathology ; Apolipoproteins E ; deficiency ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Flow Cytometry ; Gene Expression Regulation, Enzymologic ; drug effects ; Lipopolysaccharide Receptors ; metabolism ; Male ; Matrix Metalloproteinase 9 ; genetics ; metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Monocytes ; drug effects ; metabolism ; Paeonia ; chemistry ; Phytotherapy ; Plant Roots ; chemistry ; Plaque, Atherosclerotic ; blood ; drug therapy ; enzymology ; pathology ; RNA, Messenger ; genetics ; metabolism ; Receptors, IgG ; metabolism ; Tumor Necrosis Factor-alpha ; blood
6.p38 MAPK and ERK activation by 9-cis-retinoic acid induces chemokine receptors CCR1 and CCR2 expression in human monocytic THP-1 cells.
Jesang KO ; Chi Young YUN ; Ji Sook LEE ; Joo Hwan KIM ; In Sik KIM
Experimental & Molecular Medicine 2007;39(2):129-138
9-cis-retinoic acid (9CRA) plays an important role in the immune response; this includes cytokine production and cell migration. We have previously demonstrated that 9CRA increases expression of chemokine receptors CCR1 and CCR2 in human monocytes. To better understand how 9CRA induces CCR1 and CCR2 expression, we examined the contribution of signaling proteins in human monocytic THP-1 cells. The mRNA and surface protein up-regulation of CCR1 and CCR2 in 9CRA-stimulated cells were weakly blocked by the pretreatment of SB202190, a p38 MAPK inhibitor, and PD98059, an upstream ERK inhibitor. Activation of p38 MAPK and ERK1/2 was induced in both a time and dose-dependent manner after 9CRA stimulation. Both p38 MAPK and ERK1/2 phosphorylation peaked at 2 h after a 100 nM 9CRA treatment. 9CRA increased calcium influx and chemotactic activity in response to CCR1-dependent chemokines, Lkn-1/CCL15, MIP-1alpha/CCL3, and RANTES/CCL5, and the CCR2-specific chemokine, MCP-1/CCL2. Both SB202190 and PD98059 pretreatment diminished the increased calcium mobilization and chemotactic ability due to 9CRA. SB202190 inhibited the expression and functional activities of CCR1 and CCR2 more effectively than did PD98059. Therefore, our results demonstrate that 9CRA transduces the signal through p38 MAPK and ERK1/2 for CCR1 and CCR2 up-regulation, and may regulate the pro-inflammatory process through the p38 MAPK and ERK-dependent signaling pathways.
Calcium Signaling/drug effects
;
Cell Line
;
Chemokines/pharmacology
;
Chemotaxis, Leukocyte/drug effects
;
Enzyme Activation/drug effects
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Flavonoids/pharmacology
;
Gene Expression Regulation/*drug effects
;
Humans
;
Imidazoles/pharmacology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
Monocytes/drug effects/*enzymology
;
Pyridines/pharmacology
;
RNA, Messenger/genetics/metabolism
;
Receptors, CCR1
;
Receptors, CCR2
;
Receptors, Chemokine/*genetics/metabolism
;
Tretinoin/*pharmacology
;
p38 Mitogen-Activated Protein Kinases/*metabolism
7.Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-gamma.
Kyoung Jin LEE ; Hyun A KIM ; Pyeung Hyeun KIM ; Han soo LEE ; Kyung Ran MA ; Jeong Hyun PARK ; Dae Joong KIM ; Jang Hee HAHN
Experimental & Molecular Medicine 2004;36(6):534-544
During chronic inflammatory response, mono- cytes/macrophages produce 92-kDa matrix metalloproteinase-9 (MMP-9), which may contribute to their extravasation, migration and tissue remodeling. Activation of peroxisome proliferator- activated factor receptor-gamma (PPAR-gamma) has been shown to inhibit MMP-9 activity. To evaluate whether ox-LDL, a PPAR-gamma activator, inhibits PMA-induced MMP-9 expression and activity, and if so, whether CD36 and PPAR-gamma are involved in this process, we investigated the effect of ox-LDL on MMP-9 expression and activity in PMA-activated human monocytic cell line U937. PMA-induced MMP-9 expression and activity were suppressed by the treatment with ox-LDL (50 micrigram/ml) or PPAR-gamma activators such as troglitazone (5 micrometer), ciglitazone (5 micrometer), and 15d- PGJ2 (1 micrometer) for 24 h. This ox-LDL or PPAR-gamma activator-mediated inhibition of micrometer P-9 activity was diminished by the pre-treatment of cells with a blocking antibody to CD36, or PGF2a (0.3 micrometer), which is a PPAR-gamma inhibitor, as well as overexpression of a dominant-negative form of CD36. Taken together, these results suggest that ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-gamma.
Antibodies, Blocking/pharmacology
;
Antigens, CD36/immunology/*physiology
;
Cells, Cultured
;
Chromans/pharmacology
;
Gelatinase B/antagonists & inhibitors/genetics/*metabolism
;
Humans
;
Lipoproteins, LDL/pharmacology/*physiology
;
Monocytes/drug effects/*enzymology/metabolism
;
NF-kappa B/antagonists & inhibitors
;
PPAR gamma/*metabolism
;
Prostaglandin D2/*analogs & derivatives/pharmacology
;
RNA, Messenger/analysis/metabolism
;
Research Support, Non-U.S. Gov't
;
Tetradecanoylphorbol Acetate/antagonists & inhibitors/pharmacology
;
Thiazolidinediones/pharmacology
;
Transcription, Genetic/drug effects
8.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors