1.Determination of pulmonary vascular resistance by improved right heart catheter in rat.
Ping YUAN ; Wen-hui WU ; Dong LIU ; Rui ZHANG ; Zhi-cheng JING
Chinese Journal of Cardiology 2011;39(10):901-904
OBJECTIVETo establish an easy and repeatable method for determination of pulmonary vascular resistance in normal and pulmonary arterial hypertension (PAH) rats.
METHODSForty-five Sprague-Dawley rats were randomly assigned into three groups: control group, low dose monocrotaline (MCT) group (50 mg/kg) and high dose MCT group (60 mg/kg). Rats in PAH groups received single subcutaneous injection of MCT. We measured pulmonary artery pressure by right heart catheterization using an improved hand-made PE-50 catheter. Cardiac output was calculated through thermodilution method. Pulmonary vascular resistance equals the mean pulmonary artery pressure divided by cardiac output.
RESULTSThe total percentages of success to detect pulmonary artery pressure, cardiac output and pulmonary vascular resistance were 98%, 100% and 96% respectively in 3 groups. Twenty-one days after MCT injection, mean pulmonary artery pressure significantly increased in MCT group compared to control group [(43.1 ± 0.8), (54.8 ± 2.2) vs. (17.4 ± 1.0) mm Hg (1 mm Hg = 0.133 kPa), P < 0.001], and the mPAP was also significantly higher in high dose MCT group than in low dose MCT group (P < 0.001). Cardiac output was significantly lower in PAH rats than in control rats [(77.5 ± 6.9), (71.0 ± 6.7) vs. (126.8 ± 3.9) ml/min, P < 0.001]. Pulmonary vascular resistance was significantly increased in PAH rats compared with control rats [(0.56 ± 0.06), (0.76 ± 0.08) vs. (0.13 ± 0.01) mm Hg×min(-1)×ml(-1), P < 0.001]. There were significant differences in both MCT-treated groups (P = 0.01).
CONCLUSIONSPulmonary vascular resistance in rats could be reliably detected using the improved hand-made PE-50 right heart catheter.
Animals ; Cardiac Catheters ; Hypertension, Pulmonary ; diagnosis ; physiopathology ; Monocrotaline ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Vascular Resistance
2.The intervention of ginkgo biloba extract on monocrotaline-induced right ventricular hypertrophy in rats and its mechanism.
Chinese Journal of Applied Physiology 2019;35(2):169-172
OBJECTIVE:
To study the protective effects of ginkgo biloba extract on the right ventricular hypertrophy.
METHODS:
Seventy-two SD male rats were randomly divided into 3 groups: control group(CON), monocrotaline-induced right ventricular hypertrophy group (MCT) and ginkgo biloba extract treated group (EGB) (n=24 in each group). Group MCT and group EGB were intraperitoneally injected with 2%MCT at the dose of 60 mg /kg on the first day. From the second day, group MCT was injected with 2 ml 0.9% sodium chloride, and 60 mg/kg ginkgo leaf extract was administered to the stomach in group EGB. The control group was injected with 2 ml 0.9% sodium chloride on the first day. After 3 weeks, in each group,cardiac hemodynamic changes were measured, heart weight index was calculated, and myocardial pathological changes were observed by HE staining. The expression of TRPC6 was detected by real-time polymerase chain reaction (real-time -PCR) and Western blot.
RESULTS:
Compared with the control group, the right ventricular systolic pressure (RVSP) was increased significantly in the MCT group(P<0.01), the maximum or decline rate of descent (RV ±dp/dt) of the right ventricle pressure was increased significantly(P<0.01), while the EGB group had the same trend as all the indexes in the group MCT, but the amplitude of all indicators in group EGB were decreased significantly than those of group MCT(P<0.01), and the right ventricular hypertrophy index (RVMI) in group EGB was significantly lower than that in group MCT(P<0.01).Group MCT showed typical myocardial hypertrophy performance by HE staining, and the right ventricular myocytes in group EGB were significantly improved than that in group MCT, and the mRNA and protein expression levels of TRPC6 in the right ventricle of group MCT and group EGB were increased(P<0.01), while the EGB group was significantly lower than that of the MCT group(P<0.01).
CONCLUSION
Ginkgo biloba extract may inhibit the signal pathway of CaN / NFAT in cardiac myocytes by reducing the expression of TRPC6 protein, and then play an early protective effect on myocardial hypertrophy.
Animals
;
Hypertrophy, Right Ventricular
;
chemically induced
;
drug therapy
;
Male
;
Monocrotaline
;
Plant Extracts
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
3.Effect of elastase inhibitor on pulmonary hypertension induced by monocrotaline.
Li-jun FU ; Ai-qing ZHOU ; Jie SHEN ; Wu ZHAO ; Fen LI
Chinese Journal of Pediatrics 2004;42(5):375-378
OBJECTIVEPulmonary hypertension is a proliferative vascular disease characterized by pulmonary vascular structural remodeling. Until now, the pathogenesis of pulmonary hypertension is still not fully understood. Although considerable progress has been made, there is, to date, no cure for advanced pulmonary vascular disease. Recently, a number of studies suggest that endogenous vascular elastase (EVE) play a role in the vascular changes associated with pulmonary hypertension. The purpose of the study was to determine whether an elastase inhibitor might reverse advanced pulmonary vascular disease produced in rats by injection of monocrotaline.
METHODSOne hundred and twenty male Sprague-Dawley rats were used in this study. The rats were divided into three groups: control, model and ZD-0892 groups. In the model and ZD-0892 groups, the rats were subjected to a single subcutaneous injection of monocrotaline (60 mg/kg) in the hind flank, while the rats in control group received an equivalent volume of 0.9% saline. From day 21, the rats in the ZD-0892 and model groups received twice-daily gavage tube feedings of either ZD-0892 at a dose of 240 mg/kg per day or its administration vehicle, while the rats in control group were subjected to an equivalent volume of 0.9% saline. On days 21, 28 and 35 post-injection, the elastolytic activity was measured with a fluorescence microplate reader and pulmonary artery pressure was detected via catheterization. Meanwhile, the lungs were evaluated morphologically, using the barium-gelatin perfusion technique.
RESULTSThe injection of monocrotaline led to severe pulmonary hypertension in rats 21 days later and pulmonary artery elastolytic activity increased remarkably. A 1-week treatment with ZD-0892 resulted in declines in elastase activity. This was associated with significant declines in pulmonary artery pressure, decreases in muscularization of peripheral arteries and reductions in medial hypertrophy. After 2 weeks, elastase activity returned to normal level. Pulmonary artery pressure and structure were normalized.
CONCLUSIONIncreased elastase activity is important in the development of vascular changes and progressive pulmonary hypertension. ZD-0892 can suppress the elastase activity and completely reverse the fatal pulmonary hypertension induced by monocrotaline in rats.
Animals ; Hypertension, Pulmonary ; chemically induced ; drug therapy ; Male ; Monocrotaline ; toxicity ; Pancreatic Elastase ; antagonists & inhibitors ; Pulmonary Artery ; drug effects ; pathology ; physiopathology ; Pyrroles ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Sulfonamides ; pharmacology
4.Angiotensin-(1-7) improves endothelium-dependent vasodilation in rats with monocrotaline-induced pulmonary arterial hypertension.
Xuan-Xuan LIU ; Ai-Dong CHEN ; Yan PAN ; Feng ZHANG ; Zhen-Bao QI ; Nan CAO ; Ying HAN
Acta Physiologica Sinica 2023;75(4):497-502
In this study, we used a rat model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) to investigate the role and mechanism of angiotensin (Ang)-(1-7) in regulating pulmonary artery diastolic function. Three weeks after subcutaneous injection of MCT or normal saline, the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of rats were detected using a right heart catheter. Vascular endothelium-dependent relaxation was evaluated by acetylcholine (ACh)-induced vasodilation. The relaxation function of vascular smooth muscle was evaluated by sodium nitroprusside (SNP)-induced vasodilation. Human pulmonary artery endothelial cells (HPAECs) were incubated with Ang-(1-7) to measure nitric oxide (NO) release levels. The results showed that compared with control rats, RVSP and RVHI were significantly increased in the MCT-PAH rats, and both ACh or SNP-induced vasodilation were worsened. Incubation of pulmonary artery of MCT-PAH rats with Ang-(1-7) (1 × 10-9-1 × 10-4 mol/L) caused significant vaso-relaxation. Pre-incubation of Ang-(1-7) in the pulmonary artery of MCT-PAH rats significantly improved ACh-induced endothelium-dependent relaxation, but had no significant effect on SNP-induced endothelium-independent relaxation. In addition, Ang-(1-7) treatment significantly increased NO levels in HPAECs. The Mas receptor antagonist A-779 inhibited the effects of Ang-(1-7) on endothelium-dependent relaxation and NO release from endothelial cells. The above results demonstrate that Ang-(1-7) promotes the release of NO from endothelial cells by activating Mas receptor, thereby improving the endothelium-dependent relaxation function of PAH pulmonary arteries.
Rats
;
Humans
;
Animals
;
Vasodilation
;
Pulmonary Arterial Hypertension
;
Monocrotaline/toxicity*
;
Rats, Sprague-Dawley
;
Hypertension, Pulmonary/chemically induced*
;
Endothelial Cells
;
Pulmonary Artery
;
Endothelium
;
Acetylcholine/pharmacology*
;
Nitroprusside/pharmacology*
5.Mesenchymal stem cells attenuate vascular remodeling in monocrotaline-induced pulmonary hypertension rats.
Jiang XIE ; Dayi HU ; Lili NIU ; Suping QU ; Shenghao WANG ; Shuang LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(6):810-817
Intravenous and intratracheal implantation of mesenchymal stem cells (MSCs) may offer ameliorating effects on pulmonary hypertension (PH) induced by monocrotaline (MCT) in rats. The aim of this study was to examine the anti-remodeling effect of intravenous MSCs (VMSCs) and intratracheal MSCs (TMSCs) in rats with PH, and the underlying mechanisms. MSCs were isolated from rat bone marrow and cultured. PH was induced in rats by intraperitoneal injection of MCT. One week after MCT administration, the rats were divided into 3 groups in terms of different treatments: VMSCs group (intravenous injection of MSCs), TMSCs group (intratracheal injection of MSCs), PH group (no treatment given). Those receiving saline instead of MCT served as negative control (control group). Pulmonary arterial structure was pathologically observed, pulmonary arterial dynamics measured, and remodeling-associated cytokines Smad2 and Smad3 detected in the lungs, three weeks after MCT injection. The results showed that PH group versus control group had higher pulmonary arterial pressure (PAP) and wall thickness index (WTI) 21 days after MCT treatment. The expression of phosphorylated (p)-Smad2 and the ratio of p-Smad2/Smad2 were much higher in PH group than in control group. Fluorescence-labeled MSCs were extensively distributed in rats' lungs in VMSCs and TMSCs groups 3 and 14 days after transplantation, but not found in the media of the pulmonary artery. WTI and PAP were significantly lower in both VMSCs and TMSCs groups than in PH group three weeks after MCT injection. The p-Smad2 expression and the ratio of p-Smad2/Smad2 were obviously reduced in VMSCs and TMSCs groups as compared with those in PH group. In conclusion, both intravenous and intratracheal transplantation of MSCs can attenuate PAP and pulmonary artery remodeling in MCT-induced PH rats, which may be associated with the early suppression of Smad2 phosphorylation via paracrine pathways.
Animals
;
Atrial Remodeling
;
drug effects
;
physiology
;
Hypertension, Pulmonary
;
chemically induced
;
physiopathology
;
Male
;
Mesenchymal Stromal Cells
;
pathology
;
Monocrotaline
;
pharmacology
;
Pulmonary Artery
;
drug effects
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
6.Effects of rutaecarpine on right ventriclar remodeling in rats with monocrotaline-induced pulmonary hypertension.
Xian-Wei LI ; Xiang-Ming WANG ; Shu LI ; Jie-Ren YANG
Chinese Journal of Applied Physiology 2014;30(5):405-410
OBJECTIVETo investigate the protective effects of rutaecarpine (Rut) on right ventricular remodeling in rats with monocrotaline-induced pulmonary hypertension (PH).
METHODForty-eight SD rats were fed adaptively for 1 week and then were randomly divided into the following 4 groups (n = 12): normal control group, monocrotaline (MCT) treatment group, MCT treatment with Rut (20 mg/kg)group and MCT treatment with Rut (40 mg/kg) group. PH rats were induced by a single injection of monocrotaline (60 mg/kg, sc) and were administered with Rut (20 or 40 mg/kg/d) for 4 weeks. At the end of experiment, the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored via the right jugular vein catheterization into the right ventricle. The ratio of right ventricle (RV) to left ventricle (LV) + septum (S) and the ratio of RV to tibial length were calculated. Right ventricular morphological changes were deserved by HE staining. Masson's trichrome staining was used to display collagen deposition. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) levels in right ventricle were determined according to the manufacturer's instructions. mRNA and protein expression levels of NOX4, collagen I and collagen III were analyzed by immunohistochemisty, real-time PCR and Western blot.
RESULTSThe results showed that Rut treatment for 4 weeks attenuated RVSP, mPAP and right ventricular remodeling index (RV/LV + S and RV/Tibial length) of PH rats induced by monocrotaline. Furthermore, the right ventricular collagen deposition and collagen I and collagen I expression induced by MCT were both significantly suppressed by Rut. The expression levels of NOX4 and MDA were obviously decreased, while the T-AOC was significantly increased in right ventricular from PH rats treated with Rut.
CONCLUSIONThese results suggested that Rut ameliorates the right ventricular remodeling in rats with PH induced by MCT through down-regulating of NOX4 expression and collagen accumulation.
Animals ; Antioxidants ; metabolism ; Heart Ventricles ; metabolism ; Hypertension, Pulmonary ; chemically induced ; drug therapy ; Indole Alkaloids ; pharmacology ; Male ; Malondialdehyde ; metabolism ; Monocrotaline ; adverse effects ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; Quinazolines ; pharmacology ; Rats ; Ventricular Remodeling ; drug effects
7.Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats.
Xian-wei LI ; Bo GUO ; Yuan-yuan SHEN ; Jie-ren YANG
Acta Pharmaceutica Sinica 2015;50(9):1128-1134
The aim of the present study is to investigate the protective effect of chrysin (5,7-dihydroxyflavone) on right ventricular remodeling in a rat model of monocrotaline-induced pulmonary arterial hypertension (PAH). PAH rats were induced by a single injection of monocrotaline (60 mg x kg(-1), sc) and were administered with chrysin (50 or 100 mg x kg(-1) x d(-1)) for 4 weeks. At the end of experiment, the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored via the right jugular vein catheterization into the right ventricle. Right ventricle (RV) to left ventricle (LV) + septum (S) and RV to tibial length were calculated. Right ventricular morphological change was observed by HE staining. Masson's trichrome stain was used to demonstrate collagen deposition. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) levels in right ventricle were determined according to the manufacturer's instructions. The expressions of collagen I, collagen III, NADPH oxidase 4 (NOX4) and nuclear factor-kappa B (NF-κB) were analyzed by immunohistochemisty, qPCR and (or) Western blot. The results showed that chrysin treatment for 4 weeks attenuated RVSP, mPAP and right ventricular remodeling index (RV/LV+S and RV/Tibial length) of PAH rats induced by monocrotaline. Furthermore, monocrotaline-induced right ventricular collagen accumulation and collagen I and collagen III expression were both significantly suppressed by chrysin. The expressions of NOX4, NF-κB and MDA contents were obviously decreased, while the T-AOC was significantly increased in right ventricule from PAH rats with chrysin treatment. These results suggest that chrysin ameliorates right ventricular remodeling of PAH induced by monocrotaline in rats through its down-regulating of NOX4 expression and antioxidant activity, and inhibiting NF-κB expression and collagen accumulation.
Animals
;
Blotting, Western
;
Collagen
;
metabolism
;
Disease Models, Animal
;
Flavonoids
;
pharmacology
;
Heart Ventricles
;
drug effects
;
metabolism
;
Hypertension, Pulmonary
;
chemically induced
;
metabolism
;
Monocrotaline
;
toxicity
;
NADPH Oxidase 4
;
NADPH Oxidases
;
metabolism
;
NF-kappa B
;
metabolism
;
Rats
;
Ventricular Remodeling
;
drug effects
8.Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by up-regulating heme oxygenase-1 expression.
Yukun ZHANG ; Daoxin WANG ; Tao ZHU ; Changyi LI
Journal of Southern Medical University 2012;32(2):151-154
OBJECTIVETo study the effect of genistein on the expression of heme oxygenase-1 (HO-1) in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT).
METHODSSixty male Sprague-Dawley rats were randomly divided into 4 groups (n=15), namely the control group, model group, low-dose (20 µg/kg) genistein group and high-dose (80 µg/kg) genistein group. The hemodynamic parameters were measured and the remodeling of pulmonary small arteries was observed by electron microscope (EM). The expression of HO-1 in the lung tissues were detected by Western blotting.
RESULTSCompared with the model group, genistein treatment significantly reduced the elevated mean pulmonary arterial pressure, improved the right ventricular hypertrophy index, and increased the expression of HO-1 in a dose-dependent manner.
CONCLUSIONGenistein attentuates pulmonary arterial hypertension in MCT-treated rats possibly by up-regulation of HO-1 in the lung tissues.
Animals ; Genistein ; pharmacology ; therapeutic use ; Heme Oxygenase (Decyclizing) ; metabolism ; Hypertension, Pulmonary ; chemically induced ; drug therapy ; enzymology ; Lung ; enzymology ; pathology ; Male ; Monocrotaline ; Rats ; Rats, Sprague-Dawley ; Up-Regulation ; drug effects
9.TRPC6 mediates the enhancements of pulmonary arterial tone and intracellular Ca2+ concentration of pulmonary arterial smooth muscle cells in pulmonary hypertension rats.
Ming-Fang ZHANG ; Xiao-Ru LIU ; Na YANG ; Mo-Jun LIN
Acta Physiologica Sinica 2010;62(1):55-62
Pulmonary arterial hypertension is associated with profound vascular remodeling and alterations in Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Recent studies show that canonical transient receptor potential channel 6 (TRPC6) genes, which encode receptor-operated cation channels (ROCC) in PASMCs, play an important role in Ca2+ regulation and cell proliferation. The aim of the present study was to investigate the role of TRPC6 in monocrotaline (MCT)-induced pulmonary artery hypertension. Sprague-Dawley rats were randomly divided into normal control group and MCT group. In MCT group, pulmonary arterial hypertension was induced by a single intraperitoneal injection of MCT at a dose of 60 mg/kg. After 3 weeks, the right ventricular systolic pressure (RVSP) and the right ventricular mass index (RVMI) were measured. The lung sections were stained by HE and observed under light microscope. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot were performed to detect the expression of TRPC6 in rat pulmonary arteries. The 1-oleoyl-2-acetyl-sn-glycerol (OAG)-induced contractile tension of pulmonary arteries were measured by vascular ring tension analysis and the intracellular Ca2+ concentration ([Ca2+](i))of PASMCs was monitored using Fluo3-AM assay. The results showed that RVSP and RVMI markedly elevated in MCT group (P<0.01) in comparison to CON group. The thickness of pulmonary vascular smooth muscles was increased and the inner diameter of pulmonary arteries was diminished in MCT group. Though there was no significant difference in the levels of mRNA and protein of TRPC6 between CON and MCT groups, the application of OAG, which can directly activate ROCC, induced greater contraction tension of pulmonary arteries (P<0.01) and more Ca2+ entries in PASMCs (P<0.05) in MCT group compared to those in control group. These results indicate that MCT induces pulmonary artery hypertension and thus remodeling of the right ventricle and pulmonary arteries in rats. The expression of mRNA and protein of TRPC6 is not potentiated by MCT, but the TRPC6/ROCC-mediated Ca2+ entry in PASMCs and vascular tone of pulmonary arteries are significantly increased with MCT treatment.
Animals
;
Calcium
;
metabolism
;
Hypertension, Pulmonary
;
chemically induced
;
metabolism
;
physiopathology
;
Male
;
Monocrotaline
;
pharmacology
;
Muscle, Smooth, Vascular
;
cytology
;
metabolism
;
Myocytes, Smooth Muscle
;
cytology
;
metabolism
;
Pulmonary Artery
;
cytology
;
metabolism
;
physiopathology
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
TRPC Cation Channels
;
genetics
;
metabolism
10.Tanshinone IIA alleviates monocrotaline-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.
Xi Min ZHANG ; Si Jia LIU ; Ya Bin SUN ; Guo Feng LI
Journal of Southern Medical University 2022;42(5):718-723
OBJECTIVE:
To explore the therapeutic mechanism of tanshinone IIA in the treatment of pulmonary arterial hypertension (PAH) in rats.
METHODS:
A total of 100 male SD rats were randomized into 5 groups (n=20), and except for those in the control group with saline injection, all the rats were injected with monocrotaline (MCT) on the back of the neck to establish models of pulmonary hypertension. Two weeks after the injection, the rat models received intraperitoneal injections of tanshinone IIA (10 mg/kg), phosphatidylinositol 3 kinase (PI3K) inhibitor (1 mg/kg), both tanshinone IIA and PI3K inhibitor, or saline (model group) on a daily basis. After 2 weeks of treatment, HE staining and α-SMA immunofluorescence staining were used to evaluate the morphology of the pulmonary vessels of the rats. The phosphorylation levels of PI3K, protein kinase B (PKB/Akt) and endothelial nitric oxide synthase (eNOS) in the lung tissue were determined with Western blotting; the levels of eNOS and NO were measured using enzyme-linked immunosorbent assay (ELISA).
RESULTS:
The results of HE staining and α-SMA immunofluorescence staining showed that tanshinone IIA effectively inhibited MCT-induced pulmonary artery intimamedia thickening and muscularization of the pulmonary arterioles (P < 0.01). The results of Western blotting showed that treatment with tanshinone IIA significantly increased the phosphorylation levels of PI3K, Akt and eNOS proteins in the lung tissue of PAH rats; ELISA results showed that the levels of eNOS and NO were significantly decreased in the rat models after tanshinone IIA treatment (P < 0.01).
CONCLUSION
Treatment with tanshinone IIA can improve MCT-induced pulmonary hypertension in rats through the PI3K/Akt-eNOS signaling pathway.
Abietanes
;
Animals
;
Hypertension, Pulmonary/drug therapy*
;
Male
;
Monocrotaline/toxicity*
;
Nitric Oxide Synthase Type III/therapeutic use*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction