1.Protective Effects of Estradiol on Myocardial Contractile Function Following Hemorrhagic Shock and Resuscitation in Rats.
Chinese Medical Journal 2015;128(17):2360-2364
BACKGROUNDHemorrhagic shock (HS) results in myocardial contractile dysfunction. Studies showed that 17β-estradiol protects the myocardium against contractile dysfunction. The study investigated the cardioprotective effects of treatment with 17β-estradiol before resuscitation following 1 h of HS and resuscitation.
METHODSMale Sprague-Dawley rats were assigned to 2 sets of experimental protocols: Ex vivo and in vivo treatment and resuscitation. Each set had three experimental groups (n = 6 per group): Normotensive (N), HS and resuscitation (HS-R) and HS rats treated with 17β-estradiol (E) and resuscitated (HS-E-R). Rats were hemorrhaged over 60-min to reach a mean arterial blood pressure of 40 mmHg. In the ex vivo group, hearts were resuscitated by perfusion in the Langendorff system. In the 17β-estradiol treated group, 17β-estradiol 280 µg/kg was added for thefirst 5 min. Cardiac function was measured. Left ventricular generated pressure (LVGP) and +dP/dt were calculated. In the in vivo group, rats were treated with 17β-estradiol 280 µg/kg s.c. after 60-min HS. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30-min to restore normotension.
RESULTSTreatment with 17β-estradiol before resuscitation in ex vivo treated and resuscitated isolated hearts and in the in vivo treated and resuscitated rats following HS improved myocardial contractile function. In the in vivo treated group, LVGP and +dP/dt max were significantly higher in 17β-estradiol treated rats compared to the untreated group (LVGP 136.40 ± 6.61 compared to 47.58 ± 17.55, and +dP/dt 661.85 ± 49.88 compared to 88.18 ± 0.85). Treatment with 17β-estradiol improved LVGP following HS.
CONCLUSIONSThe results indicate that treatment with 17β-estradiol before resuscitation following HS protects the myocardium against dysfunction.
Animals ; Estradiol ; therapeutic use ; Male ; Myocardial Contraction ; drug effects ; Myocardium ; pathology ; Rats ; Rats, Sprague-Dawley ; Resuscitation ; Shock, Hemorrhagic ; drug therapy
2.Induction of Defense-Related Physiological and Antioxidant Enzyme Response against Powdery Mildew Disease in Okra (Abelmoschus esculentus L.) Plant by Using Chitosan and Potassium Salts.
Mona H SOLIMAN ; Riad S R EL-MOHAMEDY
Mycobiology 2017;45(4):409-420
Foliar sprays of three plant resistance inducers, including chitosan (CH), potassium sorbate (PS) (C₆H₇kO₂), and potassium bicarbonates (PB) (KHCO₃), were used for resistance inducing against Erysiphe cichoracearum DC (powdery mildew) infecting okra plants. Experiments under green house and field conditions showed that, the powdery mildew disease severity was significantly reduced with all tested treatments of CH, PS, and PB in comparison with untreated control. CH at 0.5% and 0.75% (w/v) plus PS at 1.0% and 2.0% and/or PB at 2.0% or 3.0% recorded as the most effective treatments. Moreover, the highest values of vegetative studies and yield were observed with such treatments. CH and potassium salts treatments reflected many compounds of defense singles which leading to the activation power defense system in okra plant. The highest records of reduction in powdery mildew were accompanied with increasing in total phenolic, protein content and increased the activity of polyphenol oxidase, peroxidase, chitinase, and β-1,3-glucanase in okra plants. Meanwhile, single treatments of CH, PS, and PB at high concentration (0.75%, 2.0%, and/or 3.0%) caused considerable effects. Therefore, application of CH and potassium salts as natural and chemical inducers by foliar methods can be used to control of powdery mildew disease at early stages of growth and led to a maximum fruit yield in okra plants.
Abelmoschus*
;
Bicarbonates
;
Catechol Oxidase
;
Chitinase
;
Chitosan*
;
Fruit
;
Peroxidase
;
Phenol
;
Plants*
;
Potassium*
;
Salts*
;
Sorbic Acid